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Supplementary Figure 1: Kernel destiny estimation (KDE) of the pore size distribution
compared to the pore size histogram for DUT-32. Minimum points (black points) depict the
identified pore limits.
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Supplementary Figure 2: Kernel destiny estimation (KDE) of the pore size distribution
compared to the pore size histogram for DUT-75. Minimum points (black points) depict the
identified pore limits.
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Supplementary Figure 3: Kernel destiny estimation (KDE) of the pore size distribution
compared to the pore size histogram for UMCM-1. Minimum points (black points) depict
the identified pore limits.
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Supplementary Figure 4: Kernel destiny estimation (KDE) of the pore size distribution
compared to the pore size histogram for NU-1000. Minimum points (black points) depict
the identified pore limits.
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Supplementary Figure 5: Simulated Ar adsorption isotherm of UMCM-1 at 87 K displayed
as fractional coverage, 6 ((a). Experimental Ar adsorption isotherm of UMCM-1 at 87 K
reproduced from Ref 1 (b).
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Supplementary Figure 6: Simulated Ar adsorption isotherm of NU-1000 at 87 K displayed
as fractional coverage, 6 ((a). Experimental Ar adsorption isotherm of NU-1000 at 87 K
reproduced from Ref 2 (b).
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Supplementary Figure 7: Pore-centred view of adsorption in NU-1000. Ar adsorption
isotherm at 87 K with the points extracted for radial distribution analysis labelled as points
(a). Pore environments of the pores found in NU-1000 where the centre of the pore is de-
picted by a green, orange and purple sphere (b). Radial distributions of Ar and framework
atoms (grey background) from the centre of each pore for the pressure points labelled in the
isotherm (c).
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