Electronic Supplementary Information

$[Na_4(N_5)_4(H_2O)_2]$ ·H₂O·2MeOH: a honeycomb-like sodium-

pentazolate-framework with helical chains

Yuangang Xu,^{‡*} Ze Xu,[‡] Xiaopeng Zhang, Tianyang Hou and Ming Lu*

School of Chemistry and Chemical Engineering, Nanjing University of Science and

Technology, Nanjing 210094, Jiangsu, China

E-mail: yuangangxu@163.com; luming@njust.edu.cn

Table of Contents

1.	Single-crystal X-ray diffraction analysis of framework 1	S3
2.	IR spectra	S 8
3.	Experimental sectionPXRD patterns of framework 1	S9
4.	Experimental section	S9
5.	The theoretical simulation of the porosity of framework 1	S10
6.	References	S12

1. Single-crystal X-ray diffraction analysis of framework 1

 Table S1. Crystal data, data collection, and refinement for framework 1

$H_2N_{10}Na_2O \cdot 0.5(H_2O) \cdot CH_4O$	$D_{\rm x} = 1.614 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 245.15$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Trigonal, <i>P</i> 3 ₂ 21	Cell parameters from 9535 reflections
a = 9.6556 (6) Å	$\theta = 2.7 - 27.5^{\circ}$
c = 18.7426 (9) Å	$\mu = 0.21 \text{ mm}^{-1}$
V = 1513.3 (2) Å ³	T = 100 K
Z = 6	Needle, colourless
F(000) = 750	$0.08 \times 0.05 \times 0.04 \text{ mm}$
Bruker APEX-II CCD diffractometer	2143 reflections with $I > 2\sigma(I)$
ϕ and ω scans	$R_{\rm int} = 0.081$
Absorption correction: multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1717 before and 0.1205 after correction. The Ratio of minimum to maximum transmission is 0.8579. The $\lambda/2$ correction factor is Not present.	$\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$
$T_{\min} = 0.549, \ T_{\max} = 0.640$	$h = -12 \rightarrow 12$
12964 measured reflections	$k = -12 \rightarrow 12$
2285 independent reflections	<i>l</i> = -24→22
Refinement on F ²	Hydrogen site location: mixed
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.144$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.05	$\Delta\rangle_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
2285 reflections	$\Delta \rangle_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$
147 parameters	Absolute structure: Flack x determined using 793 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
4 restraints	Absolute structure parameter: -0.2 (2)
Primary atom site location: dual	

Table S2. Fractional atomic coordinates and isotropic or equivalent isotropic

displacement parameters (Å²) for framework 1

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Na2	0.2518 (2)	0.4756 (2)	0.78806 (10)	0.0083 (4)	

Na1	0.2012 (2)	0.7469 (2)	0.62081 (11)	0.0093 (4)	
N3	-0.2473 (5)	0.3349 (6)	0.7082 (3)	0.0130 (8)	
N2	-0.1516 (5)	0.3222 (5)	0.7551 (2)	0.0127 (9)	
N10	0.4649 (5)	1.1450 (5)	0.5869 (2)	0.0120 (9)	
N9	0.5777 (5)	1.2356 (5)	0.5416 (3)	0.0136 (8)	
N5	-0.0076 (5)	0.5107 (5)	0.6823 (2)	0.0120 (9)	
N4	-0.1574 (5)	0.4516 (5)	0.6627 (2)	0.0119 (8)	
N7	0.4907 (6)	0.9918 (5)	0.5127 (2)	0.0119 (9)	
01	0.1970 (5)	0.2031 (5)	0.7668 (2)	0.0178 (7)	
H1A	0.175721	0.131776	0.798675	0.021*	
H1B	0.114791	0.167106	0.737155	0.021*	
O3	-0.3215 (6)	0.000000	0.666667	0.0323 (14)	
НЗА	-0.422032	-0.075946	0.671768	0.049*	0.5
НЗВ	-0.310868	0.073601	0.695990	0.049*	0.5
N8	0.5956 (5)	1.1418 (5)	0.4949 (2)	0.0114 (8)	
N1	-0.0024 (5)	0.4311 (5)	0.7390 (2)	0.0110 (9)	
N6	0.4099 (5)	0.9930 (5)	0.5694 (2)	0.0125 (9)	
02	-0.1306 (6)	-0.0538 (6)	0.7606 (2)	0.0335 (11)	
H2	-0.211088	-0.053055	0.743972	0.050*	
C1	-0.1420 (12)	-0.2014 (9)	0.7459 (4)	0.0433 (19)	
H1C	-0.192614	-0.274037	0.786261	0.065*	
H1D	-0.034691	-0.185860	0.738264	0.065*	
H1E	-0.206600	-0.247706	0.702853	0.065*	

Table S3. Atomic displacement parameters $(Å^2)$ for framework 1

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Na2	0.0085 (9)	0.0106 (9)	0.0070 (7)	0.0058 (7)	0.0003 (7)	0.0006 (7)
Nal	0.0086 (9)	0.0073 (9)	0.0089 (8)	0.0018 (8)	0.0010 (8)	0.0000 (7)
N3	0.0091 (18)	0.014 (2)	0.0119 (18)	0.0029 (17)	-0.0024 (19)	0.0053 (18)
N2	0.010 (2)	0.012 (2)	0.012 (2)	0.0025 (17)	0.0015 (17)	0.0048 (17)
N10	0.014 (2)	0.0092 (19)	0.011 (2)	0.0050 (17)	0.0020 (18)	-0.0020 (17)
N9	0.015 (2)	0.0099 (18)	0.0124 (18)	0.0039 (17)	0.006 (2)	0.002 (2)
N5	0.0098 (18)	0.011 (2)	0.012 (2)	0.0029 (17)	-0.0023 (16)	0.0010 (17)
N4	0.0082 (19)	0.0134 (19)	0.0105 (19)	0.0028 (17)	-0.0013 (15)	0.0031 (17)
N7	0.017 (2)	0.0057 (17)	0.011 (2)	0.0042 (16)	0.0039 (16)	0.0024 (16)
01	0.0147 (17)	0.0112 (17)	0.0250 (14)	0.0045 (15)	0.0000 (16)	0.0017 (16)
03	0.028 (2)	0.023 (3)	0.044 (3)	0.0115 (16)	-0.0055 (15)	-0.011 (3)
N8	0.013 (2)	0.0075 (18)	0.0101 (19)	0.0029 (16)	0.0039 (17)	0.0015 (14)

N1	0.0081 (19)	0.012 (2)	0.0103 (18)	0.0035 (17)	-0.0011 (17)	0.0029 (16)
N6	0.011 (2)	0.0094 (19)	0.014 (2)	0.0032 (17)	0.0019 (16)	0.0018 (18)
02	0.030 (2)	0.038 (3)	0.033 (2)	0.016 (2)	-0.0006 (19)	-0.004 (2)
C1	0.056 (5)	0.034 (4)	0.030 (4)	0.016 (4)	-0.003 (3)	-0.008 (3)

Table S4.	Geometric	parameters ((Å, °) for	framework	1
-----------	-----------	--------------	-------	-------	-----------	---

Na2—Na1 ⁱ	3.827 (3)	N10—N6	1.328 (6)
Na2—N2 ⁱⁱ	2.505 (5)	N9—N8	1.332 (6)
Na2—N9 ⁱⁱⁱ	2.471 (5)	N5—N4	1.315 (6)
Na2—N4 ⁱ	2.489 (5)	N5—N1	1.326 (6)
Na2—N7 ^{iv}	2.509 (5)	N7—N8	1.331 (6)
Na2—O1	2.443 (4)	N7—N6	1.321 (6)
Na2—N1	2.449 (5)	O1—H1A	0.8551
Na1—N3 ⁱ	2.580 (5)	O1—H1B	0.8856
Na1—N10 ⁱⁱⁱ	2.598 (5)	O3—H3A	0.8815
Na1—N5	2.448 (5)	O3—H3A ^{vii}	0.88 (16)
Na1—O1 ^v	2.498 (4)	O3—H3B ^{vii}	0.86 (6)
Na1—N8 ^{vi}	2.515 (5)	O3—H3B	0.8629
Na1—N6	2.419 (5)	O2—H2	0.8400
N3—N2	1.326 (6)	O2—C1	1.402 (10)
N3—N4	1.332 (6)	C1—H1C	0.9800
N2—N1	1.326 (6)	C1—H1D	0.9800
N10—N9	1.311 (6)	C1—H1E	0.9800
N2 ⁱⁱ —Na2—Na1 ⁱ	129.92 (12)	N3—N2—N1	107.8 (4)
N2 ⁱⁱ —Na2—N7 ^{iv}	86.72 (15)	N1—N2—Na2 ⁱⁱ	124.9 (3)
N9 ⁱⁱⁱ —Na2—Na1 ⁱ	130.75 (14)	N9—N10—Na1 ⁱⁱⁱ	120.3 (3)
N9 ⁱⁱⁱ —Na2—N2 ⁱⁱ	84.24 (16)	N9—N10—N6	108.4 (4)
N9 ⁱⁱⁱ —Na2—N4 ⁱ	82.53 (16)	N6—N10—Na1 ⁱⁱⁱ	126.5 (3)
N9 ⁱⁱⁱ —Na2—N7 ^{iv}	93.87 (16)	N10—N9—Na2 ⁱⁱⁱ	130.7 (3)
N4 ⁱ —Na2—Na1 ⁱ	58.41 (11)	N10—N9—N8	108.6 (4)
N4 ⁱ —Na2—N2 ⁱⁱ	166.10 (17)	N8—N9—Na2 ⁱⁱⁱ	119.6 (3)
N4 ⁱ —Na2—N7 ^{iv}	89.93 (15)	N4—N5—Na1	119.1 (3)
N7 ^{iv} —Na2—Na1 ⁱ	60.45 (11)	N4—N5—N1	109.0 (4)
O1—Na2—Na1 ⁱ	39.77 (10)	N1—N5—Na1	131.7 (3)
O1—Na2—N2 ⁱⁱ	105.53 (16)	N3—N4—Na2 ^v	130.9 (3)
O1—Na2—N9 ⁱⁱⁱ	169.68 (18)	N5—N4—Na2 ^v	120.5 (3)
O1—Na2—N4 ⁱ	87.47 (14)	N5—N4—N3	107.3 (4)

O1—Na2—N7 ^{iv}	83.53 (15)	N8—N7—Na2 ^{viii}	116.8 (3)
O1—Na2—N1	95.24 (15)	N6—N7—Na2 ^{viii}	132.7 (3)
N1—Na2—Na1 ⁱ	120.72 (12)	N6—N7—N8	108.9 (4)
N1—Na2—N2 ⁱⁱ	89.79 (15)	Na2—O1—Na1 ⁱ	101.49 (16)
N1—Na2—N9 ⁱⁱⁱ	88.03 (15)	Na2—O1—H1A	126.1
N1—Na2—N4 ⁱ	93.99 (15)	Na2—O1—H1B	101.2
N1—Na2—N7 ^{iv}	175.84 (16)	Nal ⁱ —O1—H1A	104.8
N3 ⁱ —Na1—Na2 ^v	130.22 (13)	Na1 ⁱ —O1—H1B	115.4
N3 ⁱ —Na1—N10 ⁱⁱⁱ	80.32 (16)	H1A—O1—H1B	108.4
N10 ⁱⁱⁱ —Na1—Na2 ^v	134.01 (12)	H3A—O3—H3A ^{vii}	93.5
N5—Na1—Na2 ^v	59.94 (11)	H3A—O3—H3B	104.1
N5—Na1—N3 ⁱ	96.65 (16)	H3A ^{vii} —O3—H3B ^{vii}	104.1
N5—Na1—N10 ⁱⁱⁱ	86.56 (14)	H3A—O3—H3B ^{vii}	49.8
N5—Na1—O1 ^v	90.35 (15)	H3B—O3—H3A ^{vii}	49.8
N5—Na1—N8 ^{vi}	91.31 (15)	H3B—O3—H3B ^{vii}	146.0
O1 ^v —Na1—Na2 ^v	38.74 (10)	N9—N8—Na1 ^{ix}	132.1 (3)
O1 ^v —Na1—N3 ⁱ	157.28 (17)	N7—N8—Na1 ^{ix}	120.3 (3)
O1 ^v —Na1—N10 ⁱⁱⁱ	121.79 (15)	N7—N8—N9	106.7 (4)
O1 ^v —Na1—N8 ^{vi}	77.83 (14)	N2—N1—Na2	130.5 (3)
N8 ^{vi} —Na1—Na2 ^v	59.08 (11)	N2—N1—N5	107.5 (4)
N8 ^{vi} —Na1—N3 ⁱ	80.42 (16)	N5—N1—Na2	121.6 (3)
N8 ^{vi} —Na1—N10 ⁱⁱⁱ	160.24 (16)	N10—N6—Na1	131.5 (3)
N6—Na1—Na2 ^v	122.49 (12)	N7—N6—Na1	121.1 (3)
N6—Na1—N3 ⁱ	84.74 (15)	N7—N6—N10	107.3 (4)
N6—Na1—N10 ⁱⁱⁱ	89.01 (15)	С1—О2—Н2	109.5
N6—Na1—N5	175.06 (17)	O2—C1—H1C	109.5
N6—Na1—O1 ^v	90.13 (14)	O2—C1—H1D	109.5
N6—Na1—N8 ^{vi}	93.60 (15)	O2—C1—H1E	109.5
N2—N3—Na1 ^v	132.4 (3)	H1C—C1—H1D	109.5
N2—N3—N4	108.3 (4)	H1C—C1—H1E	109.5
N4—N3—Na1 ^v	115.8 (3)	H1D—C1—H1E	109.5
N3—N2—Na2 ⁱⁱ	119.5 (3)		
Na2 ⁱⁱ —N2—N1—Na2	38.4 (6)	N3—N2—N1—Na2	-172.7 (3)
Na2 ⁱⁱ —N2—N1—N5	-148.6 (3)	N3—N2—N1—N5	0.3 (5)
Na2 ⁱⁱⁱ —N9—N8—Na1 ^{ix}	-21.9 (6)	N2—N3—N4—Na2 ^v	166.2 (3)
Na2 ⁱⁱⁱ —N9—N8—N7	169.3 (3)	N2—N3—N4—N5	-0.6 (6)
Na2 ^{viii} —N7—N8—Na1 ^{ix}	22.4 (5)	N10—N9—N8—Na1 ^{ix}	168.9 (4)
Na2 ^{viii} —N7—N8—N9	-167.3 (3)	N10—N9—N8—N7	0.2 (6)

Na2 ^{viii} —N7—N6—Na1	-16.7 (6)	N9—N10—N6—Na1	-178.7 (3)
Na2 ^{viii} —N7—N6—N10	164.3 (4)	N9—N10—N6—N7	0.1 (6)
Na1v—N3—N2—Na2 ⁱⁱ	-6.3 (6)	N4—N3—N2—Na2 ⁱⁱ	151.0 (3)
Na1 ^v —N3—N2—N1	-157.1 (4)	N4—N3—N2—N1	0.2 (6)
Na1 ^v —N3—N4—Na2 ^v	-32.2 (6)	N4—N5—N1—Na2	173.1 (3)
Na1 ^v —N3—N4—N5	160.9 (3)	N4—N5—N1—N2	-0.7 (5)
Na1 ⁱⁱⁱ —N10—N9—Na2 ⁱⁱⁱ	-10.6 (6)	N8—N7—N6—Na1	179.0 (3)
Na1 ⁱⁱⁱ —N10—N9—N8	156.9 (3)	N8—N7—N6—N10	0.0 (5)
Na1 ⁱⁱⁱ —N10—N6—Na1	26.0 (6)	N1—N5—N4—Na2 ^v	-167.6 (3)
Na1 ⁱⁱⁱ —N10—N6—N7	-155.3 (3)	N1—N5—N4—N3	0.9 (6)
Na1—N5—N4—Na2 ^v	17.3 (5)	N6—N10—N9—Na2 ⁱⁱⁱ	-167.7 (3)
Na1—N5—N4—N3	-174.2 (3)	N6—N10—N9—N8	-0.2 (6)
Na1—N5—N1—Na2	-12.7 (6)	N6—N7—N8—Na1 ^{ix}	-170.5 (3)
Na1—N5—N1—N2	173.5 (4)	N6—N7—N8—N9	-0.1 (6)

Symmetry codes: (i) x-y+1, -y+1, -z+4/3; (ii) -x, -x+y, -z+5/3; (iii) x-y+1, -y+2, -z+4/3; (iv) -x+y, -x+1, z+1/3; (v) x-y, -y+1, -z+4/3; (vi) y-1, x, -z+1; (vii) x-y, -y, -z+4/3; (viii) -y+1, x-y+1, z-1/3; (ix) y, x+1, -z+1.

Table S5. Hydrogen bonds (Å, °) for framework 1

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1A…O2 ⁱⁱ	0.86	2.07	2.816 (6)	145
O1—H1 <i>B</i> ⋯O2	0.89	2.30	2.885 (6)	123
O2—H2⋯O3	0.84	2.01	2.779 (7)	152
O3—H3A⋯N3	0.88	2.35	3.043(6)	135
O3—H3 <i>B</i> ⋯N2	0.86	2.38	3.164(4)	151
O3—H3 <i>B</i> ⋯N3	0.86	2.29	3.043(5)	146

Symmetry code: (ii) -x, -x+y, -z+5/3.

Fig. S1 The asymmetric unit of framework 1.

Fig. S2 Simplify the Na_5N_5 building unit into an enlarged pentagon.

2. IR spectra

Fig. S3 The IR spectrum of framework 1.

Fig. S4 The IR spectrum of MeOH.

3. PXRD patterns of framework 1

Fig. S5 The PXRD pattern (in black) of framework **1** and the calculated pattern (in red) from its single-crystal structure

4. Experimental section

4.1 Caution

Although no explosion or hazards were observed during the preparation and handling of these energetic compounds, all the materials investigated are potentially energetic materials. Small-scale syntheses are strongly encouraged. Manipulations must be carried out in a hood behind a safety shield. Eye protection and leather gloves must be worn at all times.

4.2 General methods

All reagents were purchased from Energy chemical in analytical grade and were used as supplied, if not stated otherwise. The decomposition (onset) points were obtained on a differential scanning calorimeter (NETZSCH DSC 204 F1 Phoenix) at a scan rate of 5 °C min⁻¹ in closed Al containers with a high-purity nitrogen flow of 50 mL min⁻¹. IR spectra were recorded on a Thermo Nicolet iS10 spectrometer equipped with a Thermo Scientific Smart iTR diamond ATR accessory. Elemental analyses were carried out on a vario EL

III CHNOS elemental analyzer. Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8 Advance X-ray diffractometer using Cu K α (λ = 1.5406 Å) radiation.

4.3 X-ray crystallography

A colourless needle crystal of dimensions $0.08 \times 0.05 \times 0.04$ mm³ was mounted on a Bruker Smart Apex-II diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å) with a graphite monochromator at 100 K. An Oxford Cobra low-temperature device was used to maintain the low temperature. Integration and scaling of intensity data was accomplished using the SAINT program¹. The structures were solved by intrinsic using SHELXT2015² and refinement was carried out by a full-matrix least-squares technique using SHELXL2014³. The hydrogen atoms were refined isotropically, and the heavy atoms were refined anisotropically. N-H and O-H hydrogens were located from different electron density maps. Data were corrected for the effects of absorption using SADABS⁴ Relevant crystal data and refinement results are summarized in Table S1.

4.4 Synthesis procedures

NaN₅ was synthesized according to our previously published procedures.⁵

 $[Na_4(N_5)_4(H_2O)_2]$ ·H₂O·2MeOH: 100 mg (1 mmol) NaN₅ was dissolved into the mixture of ammonia (2 M) in MeOH (5 mL) and H₂O (3 mL) under ultrasonic. The mixture was then placed in the dark at ambient temperature for several days to obtain colorless crystals of $[Na_4(N_5)_4(H_2O)_2]$ ·H₂O·2MeOH. Yield: 97.5 mg, 74 %. IR (ATR): 3616, 3392, 1613, 1394, 1230, 1007, 638 cm⁻¹. Elem anal. Calcd (%) for C₂H₁₄Na₄N₂₀O₅ (MW = 490.228): C 4.90, N 57.14, H 2.88; Found: C 4.82, N 57.20, H 2.81.

Scheme S1 Syntheses of sodium-pentazolate-frameworks. MSM = (methylsufonyl)methane; DMSO = dimethyl sulfoxide.

5. The theoretical simulation of the porosity of framework 1

The accessible surface area (Sacc) and total free volume (Vfree) were calculated through the probes with a diameter of 0.364 nm and 0 nm, respectively (Fig. S6). The calculated BET surface area and the pore volume of framework 1 are 614.3 m² g⁻¹ and 0.28 cm³ g⁻¹, respectively. In addition, the pore total accessible volume of framework 1 is about 34.1% as calculated by *PLATON* program (see *ref. ActaCrystallogr., Sect. A: Found. Crystallogr.*, 1990, 46, C34).

Fig. S6 Visualization pores in framework 1 by probes of diameter 0.364 nm (left) and 0 nm (right). Computational results obtained using software programs from Dassault Systèmes BIOVIA. The accessible surface area and total free volume of each calculation was performed with the Atoms Volume & Surfaces, and graphical displays generated with BIOVIA Materials Studio (2017).

Fig. S7 The calculated N₂ absorption diagram of $[Na_4(N_5)_4(H_2O)_2] \cdot H_2O \cdot 2MeOH$ (the water molecules and methanol molecule were removed) at 1 atm and 273 K (2.58 mmol g⁻¹). The adsorption of N₂ onto $[Na_4(N_5)_4(H_2O)_2] \cdot H_2O \cdot 2MeOH$ (the water molecules and methanol molecule were removed) was based on the Metropolis Monte Carlo method (N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087–1092.) and was simulated using Sorption Module of Material Studio packages (2017). The graphical displays generated with BIOVIA Materials Studio (2017).

6. References

- 1 Bruker, SAINT v8.34A, Bruker AXS Inc., Madison, Wisconsin, USA, 2013.
- 2 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- 3 G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- 4 Bruker, SADABS v2014/5, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- 5 Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang and M. Lu, *Nature*, 2017, 549, 78-81.