Electronic Supplementary Information:

Rapid, Energy-Efficient and Pseudomorphic Microwave-Induced-Metal-Plasma (MIMP) Synthesis of Mg₂Si and Mg₂Ge

Zhen Fan,^a Hsi-Nien Ho,^b Robert Szczęsny,^c Wei-Ren Liu,^b and Duncan H Gregory.*^a

a. WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.

b. Department of Chemical Engineering, Chung Yuan Christian University, R&D Center for Membrane Technology, Research Center for Circular Economy, 32023, No. 200, Chun Pei Rd., Chung Li District, Taoyuan City 32023, Taiwan.

c. Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland.

* Corresponding Author. Email: Duncan.Gregory@glasgow.ac.uk Tel: +44-141-330-8128.

1. Supplementary SEM/EDS and SAED Results for Mg₂Si

Figure S1. (a) The representative EDX spectrum corresponding to the SEM image in Figure 2d; and the corresponding **(b-d)** Elemental mappings of Mg, Si and O, respectively.

Diffraction No.	Indexed Diffraction Distance / nm	Lattice Plane – Mg ₂ Si
1	0.230	(220)
2	0.190	(311)
3	0.150	(331)
4	0.120	(511)
5	0.106	(531), (600)
6	0.094	(533), (622)

Table S1. Indexed lattice planes from the SAED patterns shown in Figure 1h.

2. Structure of the Nanoporous Ge Reactant Powders

Figure S2. (a, b) SEM images and (c) PXRD patterns of the nanoporous Ge reactant powders.

3. Mg₂Ge synthesized from Mg and Ge, irradiated for 30 s.

Table	S2.	Crystallographic	data	obtained	from	the	Rietveld	refinement	of the	MIMP-
synthes	sised	product of Mg ₂ Ge	e with	an irradia	tion ti	me c	of 30 s (see	e also Figure	3a).	

Chemical Formula	Mg ₂ Ge	Mg	Ge		
Crystal System	Cubic	Hexagonal	Cubic		
Space Group	Fm-3m (225)	<i>P</i> 6 ₃ / <i>mmc</i> (194)	Fd-3m (227)		
Lattice Parameter / Å	6.3935(2)	3.2124(5)	5.6568 ª		
		5.2136(17)			
Cell Volume / Å ³	261.349(22)	46.593(14)	181.014 ª		
Formula Weight / g mol ⁻¹	484.800	48.610	580.720		
Formula Units, Z	4	2	8		
Calculated Density / g cm ⁻³	3.080	1.732	5.327		
Phase Fraction / wt.%	94.3(3)	4.1(3)	1.5(1)		
No. of Variables		19			
No. of Observations		2090			
wRp	0.2646				
Rp		0.1788			
χ^2		1.960			
^{a.} Not refined.					

Table S3. Atomic parameters for MIMP-synthesised Mg_2Ge (irradiated for 30 s).

Atom	Site	x	у	Z	$100 imes U_{iso}$ / Å ²	SOF ^a
Mg	8 <i>c</i>	0.25	0.25	0.25	2.54(18)	1
Ge	4 <i>a</i>	0	0	0	2.24(12)	1

^{a.} Not refined.

4. MIMP-synthesised Mg₂Ge from Commercial Bulk Ge Powders

In order to investigate between the premise that the reaction between Mg and nanoporous Ge was pseudomorphic, a supplementary MIMP synthesis was conducted. Commercial Ge powders (Trace metal basis, 99.999%, Acros Organics) were initially ground manually using a mortar and pestle. Mg powder (35 mg) and as-ground Ge powder (45 mg) were mixed thoroughly. The MW synthesis was performed with an incident power of 200 W for an irradiation time of 90 s under a static vacuum of $P < 10^{-6}$ mbar. The Rietveld refinement results (Figure S3a; Table S4) confirmed the *anti*fluorite structure of Mg₂Ge with a lattice parameter of a = 6.3894(4) Å. The refined phase fraction of the main phase was 95.9(4) wt.%, with the presence of small amounts of MgO (3.2(2) wt.%) and Ge (0.9(6) wt.%) impurity phases indicated. In contrast to the Mg₂Ge sample synthesised from nanoporous Ge starting material (Figures 4a,b), the STEM image in Figure S3b showed that the Mg₂Ge produced from commercial Ge was composed of dense bulk particles and was not porous.

Figure S3. (a) Profile plot of the Rietveld refinement against PXRD data, and **(b)** a STEM image of the Mg_2Ge product as obtained from the MW synthesis experiment using a commercial Ge starting material, illustrating the relatively large particle size obtained.

Chemical Formula	Mg ₂ Ge	MgO	Ge
Crystal System	Cubic	Cubic	Cubic
Space Group	Fm-3m (225)	Fm-3m (225)	<i>Fd</i> -3 <i>m</i> (227)
Lattice Parameter / Å	6.3894(4)	4.2170 ª	5.6568 a
Cell volume / Å ³	260.85(5)	74.991ª	181.014 ª
Formula Weight / g mol-1	484.800	161.216	580.720
Formula Units, Z	4	4	8
Calculated Density / g cm ⁻³	3.086	3.570	5.327
Phase Fraction / wt.%	95.9(4)	3.2(2)	0.9(6)
No. of Variables		27	
No. of Observations		2093	
wRp		0.2071	
Rp		0.1397	
χ^2		0.2199	

Table S4. Crystallographic data obtained from the Rietveld refinement of the MIMPsynthesised Mg₂Ge synthesised from commercial Ge powder (see also Figure S3a).

Table S5. Atomic parameters for MIMP-synthesised Mg2Ge from commercial Ge powder (see also Figure S3a).

Atom	Site	x	у	Z	$100 imes U_{iso}$ / Å ²	SOF ^a
Mg	8 <i>c</i>	0.25	0.25	0.25	2.77(14)	1
Ge	4 <i>a</i>	0	0	0	2.26(9)	1

^{a.} Not refined.