Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Near-room-temperature dielectric switch and thermal expansion anomaly in a new hybrid crystal: (Me₂NH₂)[CsFe(CN)₅(NO)]

Qi-Yao Li,^{*a*} *Mao-Fan Li*,^{*a*} *Xiao-Xian Chen*,^{*a*} *Ya-Ping Gong*,^{*a*} *De-Xuan Liu*,^{*a*} *Wei-Jian Xu*,^{*a,b*} *Wei-Xiong Zhang*^{**a*}

^{*a*)} MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.

^{b)} Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.

Experimental

Synthesis

All chemicals were commercially available and used without further purification. The red block crystals of **1** were obtained by slow evaporation of an aqueous solution containing 0.482 g Cs₂[Fe(CN)₅(NO)] and 0.326 g Me₂NH·HCl at room temperature for several days.

X-ray Crystallographic Analysis

The *in-situ* variable-temperature single-crystal X-ray diffraction data were collected on an Agilent SuperNova with graphite monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) in a temperature range of 250–320 K. The CrystalClear software package (Rigaku) was used for data collection, cell refinement, and data reduction. Using Olex² program, the structures were solved by using Intrinsic Phasing with the SHELXT structure solution program and using full-matrix least-squares method with the SHELXL refinement program.^{S1,S2} The structures of LTP were refined using a racemic twinning matrix [-1 0 0 0 -1 0 0 0 -1] with BASF parameter. Non-hydrogen atoms were refined anisotropically and the positions of the hydrogen atoms were generated geometrically. The crystal data and structure refinement results at different temperatures for **1** are listed in Table S1.

Thermogravimetric analyses

Thermogravimetric analyses were carried out on a TA Q50 instrument in the temperature range of 298–1073 K at a heating rate of 10 K min⁻¹ under a nitrogen atmosphere.

DSC measurements

Differential scanning calorimetry was carried out on a TA DSC Q2000 instrument under a nitrogen atmosphere in aluminum crucibles with heating and cooling rates of 10 K min⁻¹ from 193 to 408 K.

Dielectric measurements

The dielectric measurement was carried on a TH2828A impedance analyzer for **1** under alternating current field with a voltage amplitude of 1.0 V and different frequences from 500 Hz to 2 MHz. The sample temperature was controlled in the range of 100–350 K with a temperature sweeping rate of 3 K/min approximately by a Mercury iTC cryogenic environment controller of Oxford Instrument. The powder sample of **1** was ground and pressed into tablets under a pressure around 5 GPa. The pressed-powder pellets were deposited with magnetic sheet used as electrodes.

Variable-temperature powder X-ray diffraction (PXRD)

Variable temperature PXRD patterns (Cu K_{α} , $\lambda = 1.54178$ Å) were collected on Bruker Advance D8 DA VANCI diffractometer for **1** in the temperature range of 223–353 K.

Hirshfeld surface analysis

Hirshfeld surfaces and the 2D-fingerprint plots were calculated with high resolution by CrystalExplorer^{S3,S4} with inputting structure file in CIF format. The bond lengths related to hydrogen atoms were set to typical neutron values (C–H = 1.083 Å and N–H = 1.009 Å).

Compound	1			
Formula	(Me ₂ NH ₂) [CsFe(CN) ₅ (NO)]			
$T(\mathbf{K})$	250(2)	320(2)		
Phases	LTP	HTP		
Crystal system	orthorhombic	orthorhombic		
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>Bmmb</i> (No. 63)		
<i>a</i> / Å	8.3288(3)	8.2860(3)		
b / Å	8.9673(3)	9.0586(4)		
c / Å	17.7852(7)	18.0168(7)		
V/\AA^3	1328.35(8)	1352.33(9)		
Ζ	4	4		
$\mu (\mathrm{mm}^{-1})$	3.832	3.764		
F_{000}	752	752		
$R_{ m int}$	0.0225	0.0225		
Completeness (%)	100	100		
Reflns. Collected	12283	6738		
Independent reflns.	3607	1108		
$R_1^a \left[I > 2 \ \mathcal{O}(I) \right]$	0.0204	0.0262		
$wR_2^b [I > 2 \sigma(I)]$	0.0432	0.0671		
R_1^a (all data)	0.0229	0.0298		
wR_2^b (all data)	0.0443	0.0704		
GOOF	1.042	1.093		
BASF	0.09(3)	/		

 Table S1. Crystal data and structure refinement parameters for 1 at LTP and HTP.

a) $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|;$ b) $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}.$

LTP	Distance (Å)	НТР	Distance (Å)
Fe1-C1	1.936(4)	Fe1-C1	1.935(7)
Fe1-C2	1.945(3)	Fe1-C1'	1.915(7)
Fe1-C3	1.944(3)	Fe1-C2	1.939(5)
Fe1-C4	1.941(4)	Fe1-N3	1.643(4)
Fe1-C5	1.949(4)	Cs1-N1	3.259(7)
Fe1-N6	1.654(3)	Cs1-N1'	3.196(7)
Cs1-N1E	3.197(4)	Cs1-N2K	3.313(5)
Cs1-N2	3.255(3)	Cs1…N1L	3.754(9)
Cs1-N3F	3.299(3)		
Cs1-N4G	3.300(3)		
Cs1-N5H	3.215(4)		
Cs1…N1I	3.716(4)		
Cs1…N2J	4.915(3)		
Cs1…N4J	3.681(4)		
Cs1…N5I	3.749(4)		

 Table S2. Selected inter-atomic distances (Å) for LTP and HTP.

Symmetry codes for LTP: E) -1+x, y, z; F) -1/2+x, 1/2-y, 1-z; G) x, -1+y, z; H) -1+x, -1+y, z; I) 1-x, -1/2+y, 1/2-z; J) -x, 1/2+y, 1/2-z. Symmetry codes For HTP: K) -1/2+x, -y,3/2-z; L) x, -y, 1-z;

D	Н	А	$d_{ m (D-H)}$ / Å	$d_{(\mathrm{H}^{\cdots}\mathrm{A})}$ / Å	$d_{(\mathrm{D}\cdots\mathrm{A})}$ / Å	∠(D–H···A) /⁰
N7	H7a	N2	0.89	2.15	3.00	161.4
N7	H7b	N1F	0.89	2.42	3.20	146.7

Table S3. Hydrogen bonds for 1 at 250 K (LTP).

Table S4. The cell parameters and *R*-factors in Pawley refinements on the variable-temperature powder X-ray diffraction patterns of 1.

Phase	<i>T</i> (K)	a (Å)	b (Å)	<i>c</i> (Å)	$V(Å^3)$	<i>R</i> _p / %	R _{wp} / %
LTP	223(2)	8.349(1)	8.997(2)	17.778(2)	1335.3(2)	3.50%	5.28%
	243(2)	8.346(1)	8.993(1)	17.795(1)	1335.7(1)	3.71%	5.50%
	263(2)	8.339(1)	8.992(1)	17.812(1)	1335.8(3)	3.28%	5.01%
	273(2)	8.339(1)	8.991(1)	17.827(1)	1336.5(1)	3.43%	5.22%
	283(2)	8.333(1)	8.991(1)	17.838(1)	1336.5(1)	3.53%	5.33%
	293(2)	8.331(1)	8.990(1)	17.848(1)	1336.8(1)	3.45%	5.04%
НТР	303(2)	8.292(1)	9.071(1)	17.977(2)	1352.2(1)	3.68%	5.56%
	313(2)	8.295(1)	9.069(1)	17.996(2)	1354.0(1)	3.51%	5.34%
	333(2)	8.300(1)	9.072(1)	18.034(2)	1357.9(1)	3.31%	5.13%
	353(2)	8.303(1)	9.074(1)	18.073(2)	1361.7(1)	3.29%	5.06%

 Table S5. The thermal expansion coefficients for 1.

	Principal	$\alpha \text{ or } \beta_{\nu}$ (×10 ⁻⁶ K ⁻¹)	direction		
	axes		а	b	С
LTP	X_1	-32(1)	-1	0	0
	X_2	-10(1)	0	1	0
	X_3	+56(1)	0	0	1
	V	+18(4)			
НТР	X_1	+7(2)	0	1	0
	X_2	+27(1)	-1	0	0
	X_3	+107(1)	0	0	1
		+142(1)			

 α and β_r represent the axial and volumetric thermal expansion coefficients, respectively.

Figure S1. Experimental and simulated X-ray diffraction patterns for 1.

Figure S2. Variable-temperature powder X-ray diffraction patterns of 1.

Figure S3. TG profile of 1.

Figure S4. Perspective view of simplified structure **1** in LTP, linkages of cyano groups and $Me_2NH_2^+$ are depicted by purple lines and yellow spheres, respectively.

Figure S5. Piezoelectric test of 1.

Figure S6. Fingerprint plots for $H \cdots C$, $H \cdots O$, and $H \cdots H$ contacts of Hirshfeld surface of organic cations in **1_LTP**.

References

- [S1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
- [S2] G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- [S3] M. A. Spackman and D. Jayatilaka, CrystEngComm., 2009, 11, 19-32.
- [S4] P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, 2021, 54, 1006-1011.