ESI

Slider-crank Mechanism in a Molecular Crystal: Conversion of Linear Thermal Expansion of Lattice to Circular Rotation of Coordination Chain

Ryo Tsunashima, Naomi Fujikawa, Misaki Shiga, Sayu Miyagawa, Shiori Ohno, Atsuko Masuya-Suzuki,[□]Tomoyuki Akutagawa,[□]Kiyonori Takahashi, Takayoshi Nakamura and Sadafumi Nishihara.

Contents

- 1. Experimental Procedures
 - 1-1. Spectroscopic studies.
 - 1-2. Single-crystal X-ray diffraction analysis
- 2. DSC
- 3. Crystallographic analysis

1. Experimental Procedures

1-1. Spectroscopic studies.

Single crystals of **1** was obtained by slow diffusion. Solution A was slowly layered on solution B. After 1-2 weeks of slow diffusion, blueish columnar single crystals were obtained (Figure S1); yield 19.3% based on Co.

Solution A; 0.1 M of dabco in MeOH

Solution B; 0.1 M of Co(NO₃)₂·6H₂O and 0.2 M of KOCN om H₂O:MeOH=1:1 mixed solution

Elemental analysis; found: C 32.001, H 3.715, N 20.834 and calc C 32.15, H 3.60, N 20.83 for KCo(C₆H₁₂N₂)(OCN)₃

FTIR (cm⁻¹): 2231 (s), 1323 (m), 1057(m), 997(w), 918(w), 843(w), 793(m), 611(m) Uv-vis-NIR (cm⁻¹): 19474, 17873, 16821, 11834

Figure S1. Photos before and after crystallization.

Figure S2. UV-vis-NIR (left) and IR (right) spectra of crystal 1.

1-2. Single-crystal X-ray diffraction analysis

Single-crystal analysis of 1;

135 K, CCDC 2159526
187 K, CCDC 2159527
239 K, CCDC 2159525
303 K, CCDC 2159523
342 K, CCDC 2159522
390 K, CCDC 2159528
446 K, CCDC 2159524

A suitable crystal 0.29×0.27×0.22 mm³ was selected and mounted on a suitable support on an XtaLAB Synergy R, HyPix diffractometer. The crystal was kept at a steady temperature during data collection. The structure was solved with the ShelXT 2018/2 structure solution program using the Intrinsic Phasing solution method and by using Olex2 as the graphical interface. The model was refined with version 2018/3 of ShelXL 2018/3 using Least Squares minimisation. Further details of the crystallographic analysis are summarised in the CIF file deposited at the CCDC. Crystallographic parameters were summarized in Table S1.

CCDC#	2159526	2159527	2159525	2159523	2159522	2159528	2159524	
Formula	C ₉ H ₁₂ CoKN ₅ O ₃							
<i>D_{calc.}</i> ∕ g cm ⁻³	1.687	1.674	1.660	1.642	1.629	1.602	1.584	
<i>m</i> /mm ⁻¹	1.622	1.609	1.595	1.578	1.566	1.540	1.522	
Formula Weight	336.27							
Colour	violet							
Shape	block							
Size/mm ³	0.29×0.27×0.22							
T/K	135	187	239	303	242	390	446	
Crystal System	hexagonal							
Flack Parameter	0.01(2)	0.02(3)	0.000(17)	0.04(3)	0.01(2)	0.00(4)	-	
Hooft Parameter	0.004(15)	-0.00(2)	-0.014(14)	0.04(2)	0.01(2)	0.03(3)	-	
Space Group	P-62c	P-62c	P-62c	P-62c	P-62c	P-62c	P6 ₃ /mmc	
a/Å	10.3499(5)	10.3782(6)	10.4110(7)	10.4530(5)	10.4730(10)	10.5556(6)	10.6103(12)	
<i>c</i> /Å	7.1351(4)	7.1530(4)	7.1669(4)	7.1875(3)	7.2162(6)	7.2239(3)	7.2328(6)	
V/Å ³	661.92(7)	667.21(9)	672.75(10)	680.13(7)	685.46(14)	697.06(8)	705.17(17)	
Ζ				2				
Wavelength/Å				0.71073				
Radiation type				Mo <i>K</i> _α				
Measured Refl.	5956	6158	6166	4236	3914	4706	1136	
Independent Refl.	643	670	670	605	603	618	340	
Reflections with I > 2(I)	603	593	598	503	520	495	292	
R _{int}	0.0711	0.1259	0.0470	0.0558	0.0468	0.1077	0.0442	
Parameters	35	36	36	36	36	35	30	
Restraints	0	0	0	0	0	0	0	
Largest Peak	0.217	0.311	0.346	0.188	0.215	0.402	0.20	
Deepest Hole	-0.312	-0.296	-0.445	-0.233	-0.182	-0.405	-0.27	
GooF	0.710	1.086	1.138	1.097	1.072	1.005	1.092	
wR_2 (all data)	0.0834	0.0747	0.0680	0.0682	0.0743	0.1259	0.0873	
wR_2	0.0814	0.0725	0.0665	0.0648	0.0715	0.1161	0.0839	
R₁ (all data)	0.0282	0.0352	0.0317	0.0374	0.0350	0.0574	0.0321	
R_1	0.0261	0.0300	0.0274	0.0279	0.0288	0.0452	0.0284	

 Table S1.
 Summary of crystallographic data.

2. DSC

DSC was shown in Figure S1 measured at different scan rate and cycle measurement at 15 K min⁻¹. Transition temperature, differential enthalpy and entropy were summarized in table S1. Differential entropy 5.5 J K⁻¹ mol⁻¹ was well agree with 5.76 J K⁻¹ mol⁻¹ (=*R*ln2) for order disorder type transition.

Figure S3. DSC (left) of compound 1.

Table S2. Transition temperature (T_c), differential enthalpy (ΔH) and entropy (ΔS)^[a]

	<i>T</i> _c , K	∆ <i>H</i> , kJ	Δ S, J K ⁻¹
		mol ^{−1}	mol ^{−1}
Heating run	400	-2.2	5.5
Cooling run	398	-1.7	4.3

[a] differential entropy was estimated using equation of $\Delta S = -\Delta H/T_c$.

3. Crystallographic analysis

Figure S4 is plots of unit cell parameters and volume against temperature. Structural evolution is continuous against increases in temperature. From the temperature dependence of the lattice parameter *a* and *c* as well as distance between K⁺ and Co²⁺, thermal expansion coefficients α_a , α_c , and α_x were determined, respectively (Table S3).

Figure S4. Plots of unit cell parameters and volume against temperature.

Table S3. Thermal expansion coefficient estimated for lattice parameter $a(\alpha_a)$ and $c(\alpha_c)$ as well as distance between K⁺ and Co²⁺(α_x).

	135 K	187 K	239 K	303 K	342 K	390 K	446 K
<i>x</i> , Å	5.975	5.992	6.011	6.035	6.047	6.094	6.126
<i>α_x,</i> 10 ^{−5} K ^{−1}	-	5.78	6.17	5.79	11.2	12.5	-
<i>a</i> , Å	10.3499	10.3652	10.411	10.453	10.473	10.5556	10.6103
α _a , 10 ⁻⁵ K ⁻¹	-	5.67	7.27	5.76	11.3	12.5	-
<i>c</i> , Å	7.1351	7.1467	7.1669	7.1875	7.2162	7.2239	7.2328
α _c , 10 ⁻⁵ K ⁻¹	-	7.28	7.91	6.66	5.80	2.21	-

Figure S5. Packing structure at 135 K (thermal ellipsoid: 50 % of probability).

Figure S6. Packing structure at 390 K (thermal ellipsoid: 50 % of probability).

Figure S7. Powder X-ray diffraction pattern at 303 K.

Figure S8. Plot of distances between C of dabco and N of OCN⁻ against angle by which dabco molecule was rotated with coordination bonds constant (data at 135 K(blue) and 446 K(red)). At both temperature, distances were lowered below the sum of vdW radii 3.25 Å (red line) when orientational angle of dabco and cyanate triangle differed above ~10°, indicating correlated rotational motion is originated rom to steric hindrance. This is probably an origin for why N atoms are not thermally disordered at the phase-I.

Table S4. Summary of interatomic distances in cyanate. In the crystal 1, bond length of N-C and C-O of cyanate differs. This type of structure suggests N≡C–O⁻ rather than ⁻N=C=O.
Coordination Co-N-C is almost linear, which is compatible with approximate *sp* hybridization of the N atom in N≡C–O⁻. Negative charge is considered to be located on O atom.

Compound	<i>d</i> (N-C), Å	<i>d</i> (C-O), Å	Method	ref	
NCO-	1 17(1)	1.26(1)	Photoelectron spectra at	1	
	1.17(1)		gas phase		
(NH ₄)NCO	1 101/5)	1.215(5)	Neutron powder diffraction	2	
	1.191(0)		experiment at 14 K		
AgNCO	1.195(11)	1.180(11)	Single crystal X-ray	3	
			diffraction		
1	1 163(4)	1.216(4)	Single crystal X-ray	This work	
	1.103(4)		diffraction		

Figure S9. Definition and temperature dependence of O-K-O angle.

References

[1] S. E. Bradforth, E. H. Kim, D. W. Arnold, and D. M. Neumark. *J. Chem. Phys.*, 98, 800.
[2] E. J. MacLean, K. D. M. Harris, B. M. Kariuki, S. J. Kitchin, R. R. Tykwinski, I. P. Swainson, J. D. Dunitz, *J. Am. Chem. Soc.* **2003**, *125*, 14449–14451.

[3] D. Britton, J. D. Dunitz, Acta Crystallogr. **1965**, 18, 424–428.