A 2-fold interpenetrated zinc-organic framework with triazole sites: luminescent sensing of Fe^{3+} and $Cr_2O_7^{2-}$, and warm white-light emission by Ln^{3+} ions encapsulated

Bowen Qin,^{a, b} Xiaoying Zhang,^{*, a} Jiangyan Dang,^a Dan Yue,^b Bing Zhang,^b Weidong Li,^b Godefroid Gahungu,^c Zhenling Wang,^{*, b} and Jingping Zhang^{*, a}

^a Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

^b College of Materials Engineering, Henan International Joint Laboratory of Rare
 Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P.
 R. China

^c Department of Chemistry, University of Burundi, BP 2700, Bujumbura, BURUNDI

Compound	Compound 1
empirical formula	$C_{49}H_{55}N_9O_{17}Zn_2$
formula weight	1172.79
<i>T</i> [K]	293.15
crystal system	Triclinic
space group	Р
<i>a</i> [Å]	14.498
<i>b</i> [Å]	14.504
<i>c</i> [Å]	17.761
α [°]	84.51
β[°]	79.25
γ [°]	61.42
V	3222.0
Ζ	2
$\rho_{\text{calcd}} [\text{g cm}^{-3}]$	0.909
μ [mm ⁻¹]	0.785
<i>F</i> (000)	896
reflections collected	60593
independent reflections	12270
GOF	1.045
$R_1,^{[a]} I > 2\sigma(I)$	0.0538
$wR_2,^{[b]} I > 2\sigma(I)$	0.1681

Table S1. Crystallographic data for compound 1.

 Table S2. Selected bond distances (Å) and bond angles (°) for complex 1.

Zn(1)-O(1)	1.974(3)	Zn(2)-O(5)#1 1		1.960(3)	
Zn(1)-O(2)	2.396(3)	Zn(2)-O(7)	1.9	86(3)	
Zn(1)-O(4)#1	1.978(3)	Zn(2)-O(9)#2	2.2	91(3)	
Zn(1)-O(6)	1.960(3)	Zn(2)-O(10)#2	2.0	15(3)	
Zn(1)-N(1)	2.056(3)	Zn(2)-N(6)#3	2.0	45(3)	
O(1)-Zn(1)-N(1)	108.03(12)	O(5)#1-Zn(2)-O(7)		101.36(12)	
O(1)-Zn(1)-O(2)	58.52(13)	O(5)#1-Zn(2)-O(10)#2		143.37(14)	
O(1)-Zn(1)-O(4)#1	102.78(13)	O(5)#1-Zn(2)-N(6)#3 10		100.06(11)	
O(4)#1-Zn(1)-N(1)	96.65(13)	O(5)#1-Zn(2)-O(9)#2 94		94.23(13)	
O(4)#1-Zn(1)-O(2)	160.79(14)	O(7)-Zn(2)-O(9)#2 1		153.94(13)	
O(6)-Zn(1)-O(1)	133.49(13)	O(7)-Zn(2)-O(10)#2 9		96.49(13)	
O(6)-Zn(1)-O(2)	86.67(12)	O(7)-Zn(2)-N(6)#3 99.		99.14(12)	
O(6)-Zn(1)-O(4)#1	106.25(13)	O(10)#2-Zn(2)-O(9)#2 59.		59.63(13)	
O(6)-Zn(1)-N(1)	103.81(13)	O(10)#2-Zn(2)-N(6)#3 108.38		108.38(13)	
N(1)-Zn(1)-O(2)	93.88(13)	N(6)#3-Zn(2)-O(9)#2 98.53		98.53(13)	

Symmetry transformations used to generate equivalent atoms: #1: x-1, y+1, z; #2: x, y-1, z; #3: x, y, z-1.

Fig. S1 The coordination mode of H_2OBA ligand.

Table	S3 .	The	comparison	of	Zn··· Zn	distance	in	paddle-wheel	units	with	other
reporte	d wo	orks.									

Compound name	AtomAtom	Corresponding	References	
		distance (A)		
HKUST-1	Cu…Cu	2.628	Science, 1999,	
			283, 1148-1150	

$[\{Zn_2(abtc)(dmf)_2\}_3] \cdot 4$	Zn…Zn	2.999	Angew. Chem.,
$H_2O \cdot 10dmf$			Int. Ed., 2008,
			47, 7741-7745
MOF-508a	Zn…Zn	2.961	Angew. Chem.
			Int. Ed., 2006,
			118, 1418-1421
MOF-508b	Zn…Zn	2.983	Angew. Chem.
			Int. Ed., 2006,
			118, 1418-1421
{[Zn ₂ (BPnDC) ₂ -	Zn…Zn	3.007	Chem. Eur. J.,
(dabco)]·13DMF·3H ₂ O			2008, 14, 8812-
}n			8821
Zn-TCPP	Zn…Zn	2.948	Cryst. Growth
			Des., 2017, 17,
			2090-2096
$Zn_2(\mu-$	Zn…Zn	3.379	CrystEngCom
OH)(dia) ₂ (sip)·2H ₂ O			m, 2022, 24,
			5450-5459
Compound 1	Zn…Zn	3.458	This work

Fig. S2 Schematic illustration of the topologic framework of compound 1.

Fig. S3 Crystal structure of compound 1 with the 2-fold interpenetrated framework.

Fig. S4 (a) The PXRD spectra of complex 1 as prepared and simulated with the test angle of 5-40 degree; (b) The PXRD spectra of compound 1 as prepared and simulated with the test angle of 2-40 degree; (c) TGA curve of compound 1. Thermogravimetric analysis curve of compound 1 shows 24% weight loss, which can be assigned to loss of 3 DMA and 4 H₂O molecules (cal. 24.84 %) from the crystal lattice.

Fig. S5 The excitation spectrum and emission spectrum (excited on 290 nm) of compound 1 in DMF.

Fig. S6 Luminescence spectra of compound 1 (excited on 290 nm) in DMF with various nitrate salts (1 mM).

Fig. S7 Luminescence spectra of compound 1 (excited on 290 nm) before and after addition of Fe^{2+} .

Fig. S8 The photographs of compound 1 suspension treated with Fe^{3+} and $Cr_2O_7^{2-}$ taken under UV light excitation.

Fig. S9 Luminescence spectra (excited on 290 nm) of compound 1 suspension after treated with varying amounts of Fe^{3+} (a) and $Cr_2O_7^{2-}$ (b).

Fig. S10 Multiple cycles for the luminescent quenching of compound 1 by $Fe^{3+}(a)$ and $Cr_2O_7^{2-}(b)$ and recovery after washing by DMF for several times.

Fig. S11 Luminescence spectra (excited on 290 nm) of compound 1 suspension after treated with different anions.

Compound name	K _{sv} , M ⁻¹	Detection	References
		limit, µM	
SLX-1		6.45	DaltonTrans., 2022, 51,
			2890-2897
$\{[(CH_3)_2NH_2]_4[Ca_2Zn_4(L)_4]\cdot 4$	4.36×10 ³	18.8	CrystEngComm, 2020, 22,
DMF _n			4710-4715
Zn-MOF	3.93×10 ⁴	0.90	Inorg. Chem., 2020, 59,
			4588-4600
[Zn(TIBTC)(DMA)]·[NH ₂ (CH	9.71×10 ⁴	3.45	Inorg. Chem., 2020, 59,
3)2]			8081-8098
$[Cd(TIBTC)(H_2O)] \cdot [NH_2(CH_3)]$	2.43×10^{4}	5.51	
)2]·DMA			
$[Zn_3(dpcp)_2(1,4'-bmib)_2]_n$	40632	1.43	Cryst. Growth Des., 2021,
${[Zn_4(dpcp)_2(4,4'-bibp)_2(\mu_2-$	143855	0.21	21, 5558-5572
$O_{4}]$ ·3H ₂ O $_{n}$			
[Zn(2-ata)(bidpe)] _n	52732	0.57	
[Zn(bbibp)(HCOO) ₂] _n	24713	1.36	
[Bi(BTC)(H ₂ O)]·H ₂ O	2.02×10^{4}	1.59	Cryst. Growth Des., 2019,
			19, 7217-7229
Eu-MOF	2.23×10^{4}	1.12	CrystEngComm, 2022, 24,
			1358-1367
$[Co_2(4-dptb)_2(1,3-BDC)_2] \cdot 2H_2O$		5.84	Cryst. Growth Des., 2021,
			21, 4390-4397
$[Zn(OBA)_2(L_1) \cdot 2DMA]_n$	4.22×10 ⁴	1.06	Inorg. Chem., 2021, 60,
			1716-1725
Compound 1	7.69×10 ⁴	0.58	This work
Eu^{3+}/Tb^{3+} (a) compound 1 (3:2)	4.606×10^{4}	0.98	This work

Table S4. Comparison of K_{sv} and limits of detection among other reported materials and compound 1 as the Fe³⁺ sensor.

Table S5. Comparison of K _{sv} and limits	of detection among other	r reported materials
and compound 1 as the $Cr_2O_7^{2-}$ sensor.		

Compound name	K _{sv} , M ⁻¹	Detection	References
		limit, µM	
$[Zn_2(tpeb)(bpdc)_2]$	1.08×10^{4}	1.07	Inorg. Chem., 2020, 59,
			8818-8826
$[Zn_3(dpcp)_2(1,4'-bmib)_2]_n$	5.32×10 ⁴	0.71	Cryst. Growth Des.,
			2021, 21, 5558-5572
Eu-MOF	1.29×10 ⁴	1.95	CrystEngComm, 2022,
			24, 1358-1367
[Co ₂ (4-dptb) ₂ (1,3-BDC) ₂]·2H ₂ O		6.51	Cryst. Growth Des.,
			2021, 21, 4390-4397

CSMCRI-5	1.73×10^{4}	none	Inorg. Chem., 2020, 59,
			3012-3025
$[Bi(BTC)(H_2O)] \cdot H_2O$	1.95×10 ⁴	1.64	Cryst. Growth Des.,
			2019, 19, 7217-7229
${[H_2N(Me)_2]_2[Zn_5(L)_2(OH)_2]}$	1.45×10^{4}	186	New J. Chem., 2022, 46,
$3DMF \cdot 4H_2O_n$			4292-4299
$\{ [Cd(L)(H_2O)_2] \cdot 4H_2O \}_n $	3.58×10 ⁴	8.2	CrystEngComm, 2019,
			21, 5185-5194
$[Zn(OBA)_2(L_1) \cdot 2DMA]_n$	1.2×10^{4}	3.87	Inorg. Chem., 2021, 60,
			1716-1725
Compound 1	3.28×10 ⁴	1.37	This work
$Eu^{3+}/Tb^{3+}@compound 1 (3:2)$	2.16×10 ⁴	2.08	This work

Fig. S12 The PXRD patterns of compound 1 after immersed in DMF solution containing cations (a) and anions (b) with concentration of 1 mM. Some ions enter the skeletons, making the diffraction peaks of this compound change partially.

Fig. S13 The lifetime curves of compound 1.

Fig. S14 The excitation spectrum of compound 1 and the UV-Vis adsorption spectra of Fe^{3+} in DMF.

Fig. S15 (a) High-resolution XPS spectra of compound 1 before and after sensing Fe^{3+} ; (b) High-resolution XPS spectra for the N 1s region of compound 1 before and after sensing Fe^{3+} .

Fig. S16 The excitation and emission spectra of compound 1 and the UV-Vis adsorption spectra of $Cr_2O_7^{2-}$ in DMF.

Fig. S17 (a) High-resolution XPS spectra of compound 1 before and after sensing $Cr_2O_7^{2-}$; (b) High-resolution XPS spectra for the N 1s region of compound 1 before

and after sensing $Cr_2O_7^{2-}$.

Fig. S18 The N_2 adsorption/desorption curve of compound 1 at 77 K with different exchange solvents (a: dichloromethane; b: methanol). The outgas temperature is 120°C. The gas desorption data with obvious hysteresis confirm a breathing behavior for compound 1, suggesting the flexibility between the skeletons.

Fig. S19 The PXRD patterns of Ln³⁺@compound 1.

Fig. S20 (a) High-resolution XPS spectra of compound 1 before and after

encapsulating Ln^{3+} ; (b) High-resolution XPS spectra for the N 1s region of compound 1 before and after encapsulating Ln^{3+} .

Fig. S21 The leaching tests of samples 1 and 4 performed in DMF.

Fig. S22 The emission spectra of Eu/Tb-doped compound 1 (excited on 290 nm). The samples 5 and 7 were prepared by soaking 40 mg MOF in 10 mL DMF solutions containing 25 mM Ln^{3+} with different molar ration.

Fig. S23 The CIE chromaticity diagram of Eu^{3+}/Tb^{3+} @compound 1 with white-light emission.

Fig. S24 The lifetime curves of white light emission sample.

Fig. S25 The emission spectra of samples 8 and 9 prepared by soaking 40 mg compound 1 in 10 mL DMF solutions containing 10 mM (a) and 1 mM (b) Ln^{3+} with molar ration 2/3 (Eu/Tb) (excited on 290 nm).

Fig. S26 Luminescent spectra of $Eu^{3+}/Tb^{3+}@$ compound 1 (excited on 290 nm) in DMF with various cations (a) and anions (b) (1 mM), respectively.

Fig. 27 The luminescent spectra (a) and Stern-Volmer plots (b) for sensing Fe^{3+} with different concentrations $Cr_2O_7^{2-}$ by compound 1.

Fig. 28 The luminescent spectra (a) and Stern-Volmer plots (b) for sensing $Cr_2O_7^{2-}$ with different concentrations by compound 1.