Supporting Information

Hierarchical Co(OH)F/CoFe-LDH heterojunction enabling

high-performance overall water-splitting

Mingliang Qin^a, Yamei Wang^a, Huaming Zhang^{a, c*}, Muhammad Humayun^b, Xuefei Xu^b,

Yanjun Fu^{a, c}, Marsil K. Kadirov^d, Chundong Wang^{b*}

^a Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province,

Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China.

^b School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics,

Huazhong University of Science and Technology, Wuhan 430074, P.R. China

^c Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, P. R. China.

^d A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8, Akad. Arbuzov Str., Kazan 420088, Russia.

^{*} Corresponding author 70451@nchu.edu.cn (H.M. Zhang); apcdwang@hust.edu.cn (C.D. Wang)

Figure. S1. SEM images of CoFe-LDH on Co(OH)F under different electrodeposition times. (a) 10 s; (b) 20 s; (c) 40 s; (d) 60 s.

Figure. S2. (a) SEM image of bare NF after removing the oxide layer with 3 M HCl treatment. (b) SEM image of NF surface covered by Co(OH)F @CoFe-LDH.

Figure. S3. SEM image of the CoFe-LDH

	Element	Atom %	Weight %
40 <u>-</u> -	Со	22.09	46.08
	Fe	0.98	0.50
cbs/ev	0	42.94	24.32
	F	9.58	6.45
	Ni	4.49	9.34
	C	19.92	13.31
0- <mark> </mark>	10 12	14 16	18 keV

Figure. S4. EDS spectrum of Co(OH)F@CoFe-LDH.

Figure. S5. XPS survey spectrum of Co(OH)F@CoFe-LDH

Figure. S6. Polarization curves of different Co(OH)F@CoFe-LDH samples prepared with different electrodeposition times for OER.

Figure. S7. CV curves of the catalysts recorded in the region of 1.15-1.20 V. (a) Co(OH)F@CoFe-LDH, (b) Co(OH)F, (c) NF, (d) CoFe-LDH.

Figure. S8. Polarization curves of different Co(OH)F@CoFe-LDH samples prepared with different electrodeposition times for HER

Figure. S9. CV curves of the catalysts recorded in the region of 0.37-0.42 V. (a) Co(OH)F@CoFe-LDH, (b) Co(OH)F, (c) NF, (d) CoFe-LDH.

Figure. S10. XRD spectra of the Co(OH)F@CoFe-LDH before and after OER and HER stability

tests

Figure. S11. (a) SEM images of Co(OH)F@CoFe-LDH before stability tests. (b) SEM images of Co(OH)F@CoFe-LDH after stability tests (OER). (c) SEM images of Co(OH)F@CoFe-LDH after stability tests (HER)

Figure. S12. XPS survey of Co(OH)F@CoFe-LDH before and after stability tests

Figure. S13. high-resolution XPS spectra of (a) Co 2p, (b) Fe 2p, (c) F 1s and (d) O 1s of

Co(OH)F@CoFe-LDH before and after stability tests.

Fig. S14. (a) Diagram of the amount of H_2 and O_2 released over time in 1 M KOH. (b) Device diagram for measuring Faraday efficiency. (c-f) Corresponding levels of H_2 and O_2 gases generated at different times 1 M KOH electrolyzer.

Fig. S15. Schematic illustration of the electrocatalytic HER and OER in 1M KOH solution.

	ICP-MS (wt %)			
Catarysts	Co	Fe	Co: Fe (at.)	
Co(OH)F@CoFe-LDH	51.29	1.2	42.7:1	
CoFe-LDH	23.58	6.7	3.4:1	

 Table S1. ICP-MS results of catalysts

Table. S2. Electrocatalytic activity of OER, HER and overall water splitting for the reported various electrocatalysts in 1 M KOH at the current density of j mA/cm².

	HER		OER		Overall	
					water	
Catalysts					splitting	Reference
Cuturysts	η (mV)	Tafel	η (mV)	Tafel	η (V)	s
	@j	Slope	@j	Slope	@j	
	(mA/cm ²	(mV/dec	(mA/cm ²	(mV/dec	(mA/cm ²)	
))))		
	130@10	82.9	240@10	25.4	1.58@10	
Co(OH)F@CoFe-LDH/N F	208@50	82.9	262@50	25.4	1.67@50	This work
	245@100	82.9	274@100	25.4	1.7@100	
CoFe@NiFe-200/NF	240@10	84.69	190@10	45.71	1.59@10	[1]
NiFe LDH-NiSe/NF	276@100	70	240@100	65.6	1.53@10	[2]
NiCo ₂ S ₄ @NiFe-LDH	200@10	46.3	201@60	101.1	1.6@10	[3]
Co ₃ S ₄ @MoS ₂	210@10	88	330@10	59		[4]
Ni ₃ S ₂ -CoMoS _x /NF	234@10	125	90@10	75	1.49@10	[5]
FeS/NiS/NF	144@10	120	203@10	39	1.618@1 0	[6]
Cu@CoFe-LDH	171@10	36.4	240@10	44.4	1.681@1	[7]
NiFe-LDH-Co ₃ O ₄	162@10	105	214@10	30	1.64@10	[8]
NiCo2O4@NiO@Ni	124@10	58	240@10	43	1.6@10	[9]
CoS-Co(OH) ₂ @aMoS _{2+x}	143@10	68	380@10	68	1.58@10	[10]

References

[1] A. Karmakar, K. Karthick, S.S. Sankar, S. Kumaravel, R. Madhu, S. Kundu, A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review, *J. Mater. Chem. A*, 2021, **9**, 1314.

[2] S. Dutta, A. Indra, Y. Feng, T. Song, U. Paik, Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity, *ACS Appl. Mater. Interfaces*, 2017, **9**, 33766.

[3] X. Feng, Q. Jiao, W. Chen, Y. Dang, Z. Dai, S.L. Suib, J. Zhang, Y. Zhao, H. Li, C. Feng, Cactus-like NiCo₂S₄@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution, *Appl. Catal. B Environ.*, 2021, **286**, 119869.

[4] Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co₃S₄@MoS₂ Heterostructures as Efficient Bifunctional Catalysts, *Chem. Mater.*, 2017, 29, 5566.

[5] L. Zhao, H. Ge, G. Zhang, F. Wang, G. Li, Hierarchical Ni₃S₂-CoMoSx on the nickel foam as an advanced electrocatalyst for overall water splitting, *Electrochimica Acta*, 2021, **387**, 138538.

[6] R. Zhang, Z. Zhu, J. Lin, K. Zhang, N. Li, C. Zhao, Hydrolysis assisted in-situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting, *Electrochim. Acta*, 2020, 332, 135534.

[7] L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen, Z. Ren, Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting, *Nano Energy*, 2017, **41**, 327.

[8] J. Wang, Y.F. Song, Synchronous Electrocatalytic Design of Architectural and Electronic Structure Based on Bifunctional LDH-Co₃O₄ /NF toward Water Splitting, *Chemistry*, 2021, 27, 3367.

[9] L. Wang, C. Gu, X. Ge, J. Zhang, H. Zhu, J. Tu, Highly Efficient Bifunctional Catalyst of NiCo₂O₄@NiO@Ni Core/Shell Nanocone Array for Stable Overall Water Splitting, *Part. Part. Syst. Char.*, 2017, 34, 1700228.

[10] T. Yoon, K.S. Kim, One-Step Synthesis of CoS-Doped β -Co(OH)₂@Amorphous MoS_{2+x} Hybrid Catalyst Grown on Nickel Foam for High-Performance Electrochemical Overall Water Splitting, *Adv. Funct. Mater.*, 2016, **26**, 7386.