The role of 2-Ethylhexanoic acid in manipulating the morphology and upconversion of the flame-made Y₂O₃:Yb³⁺/Ho³⁺ nanoparticles toward remote temperature sensing

Shuai Hu^a, Maohui Yuan^{ab}, Changqing Song^{*ac}, Kai Han^{*ad}, Linxuan Wang^a, Hanchang Huang^a, Wenda Cui^{ac}, Zining Yang^{ac}, and Hongyan Wang^{ac}

^aCollege of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China. E-mail: <u>hankai0071@nudt.edu.cn</u>.

^bDepartment of Physics and Chemistry, PLA Army Academy of Special Operations, Guangzhou, 510507, China.

^cHunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, 410073, China.

^dState Key Laboratory of Pulsed Power Laser Technology, Changsha, 410073, China.

[‡]These authors contributed equally to this work and should be considered co-first authors.

Fig.S1 Average size of Y_2O_3 :Yb³⁺(8 mol%)/Ho³⁺(1 mol%) UCNPs with different 2-EHA/RE³⁺ molar ratios (x/1, x = 0, 0.5, 1, 1.5, 2, 2.5, 3) calculated by XRD.

Fig.S2 TEM images of Y_2O_3 : $Yb^{3+}(8 \text{ mol}\%)/Ho^{3+}(1 \text{ mol}\%)$ UCNPs with 2-EHA/RE³⁺ molar ratios: x/1, (a) x = 3; (b) x = 5; (c) x = 10. The corresponding particle size distribution based on TEM images (a) (b) and (c) recorded as (d), (e) and (f), respectively.

Fig.S3 UCL spectra of Y_2O_3 : $Yb^{3+}(8 \text{ mol}\%)/Ho^{3+}(1 \text{ mol}\%)$ UCNPs with 2-EHA/RE³⁺ molar ratio (x/1, x = 3, 5, 10) under the excitation of 976 nm laser with the power density of 159.09 W cm⁻²;