The role of 2-Ethylhexanoic acid in manipulating the morphology and upconversion of the flame-made Y$_2$O$_3$:Yb$^{3+}$/Ho$^{3+}$ nanoparticles toward remote temperature sensing

Shuai He, Maohui Yuan*, Changqing Song*, Kai Han*, Linxuan Wang*, Hanchang Huang*, Wenda Cui*, Zining Yang*, and Hongyan Wang*

*College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China. E-mail: hankai0071@nudt.edu.cn.

Department of Physics and Chemistry, PLA Army Academy of Special Operations, Guangzhou, 510507, China.

Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, 410073, China.

State Key Laboratory of Pulsed Power Laser Technology, Changsha, 410073, China.

These authors contributed equally to this work and should be considered co-first authors.

Fig. S1 Average size of Y$_2$O$_3$:Yb$^{3+}$(8 mol%)/Ho$^{3+}$(1 mol%) UCNPs with different 2-EHA/RE$^{3+}$ molar ratios (x/1, x = 0, 0.5, 1, 1.5, 2, 2.5, 3) calculated by XRD.
Fig. S2 TEM images of Y₂O₃:Yb³⁺(8 mol%)/Ho³⁺(1 mol%) UCNPs with 2-EHA/RE³⁺ molar ratios: x/1, (a) x = 3; (b) x = 5; (c) x = 10. The corresponding particle size distribution based on TEM images (a) (b) and (c) recorded as (d), (e) and (f), respectively.

Fig. S3 UCL spectra of Y₂O₃:Yb³⁺(8 mol%)/Ho³⁺(1 mol%) UCNPs with 2-EHA/RE³⁺ molar ratio (x/1, x = 3, 5, 10) under the excitation of 976 nm laser with the power density of 159.09 W cm⁻²;