Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Quest for Extended Coordination Networks from High Connected Azido-Bridged Clusters

Shuai Li,^a Song-De Han,^b Jiong-Peng Zhao,^{*,a} Fu-ChenLiu^a

Table S1. Selected bond lengths [°] and angles [Å] for 1 and 2.					
1					
Co1—O3 ⁱ	2.070(5)	Co1—N1	2.164(5)		
Co1—O1	2.077(5)	Co1—N1 ⁱⁱⁱ	2.185(5)		
Co1—O2 ⁱⁱ	2.126(4)	Co1—N1 ^{iv}	2.193(6)		
Co1—N1—Co1 ^{vi}	141.7(3)	Co1—N1—Co1 ⁱⁱ	91.7(2)		
Co1 ^{vi} —N1—Co1 ⁱⁱ	91.1(2)				
i - y + 1/3, x - y - 1/3, z - 1/3; ii y + 1/3, -x + y + 2/3, -z + 2/3; iii - y + 1, x - y, z; iv x - y + 1/3, x - 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 2/3; iv x - y + 1/3, -z + 1/3; iv x - 1/3; iv x - y + 1/3, -z + 1/3; iv x - 1/3;					
^v - <i>x</i> + <i>y</i> +2/3, - <i>x</i> +1/3, <i>z</i> +1/3; ^{vi} - <i>x</i> + <i>y</i> +1, - <i>x</i> +1, <i>z</i> .					
2					
Co1—O2 ⁱ	2.064(6)	Co1—O3 ⁱⁱ	2.097(6)		
Co1—O1	2.078(6)	Co1—N4 ⁱⁱⁱ	2.100(7)		
Co1—N4	2.080(7)	Co1—N1	2.422(6)		
Co1—N4—Co1 ⁱ	100.8(3)	Co1—N1—Co1 ⁱⁱⁱ	83.4(2)		
Co1 ⁱ -N1-Co1 ⁱⁱⁱ	140.2(7)				
ⁱ y, $-x+1/2$, z; ⁱⁱ $-y$, $x-1/2$, $-z+2$; ⁱⁱⁱ $-y+1/2$, x, z; ^{iv} $y+1/2$, $-x$, $-z+2$.					

Fig. S1 a) Front view of the (3,6)-connected 3-nodal topological net of 1. b) Side view of 3D network of 1.

Fig. S2 a) The two-dimensional layers of 2 containing protonated water aggregate. b) The protonated water clusters $H^+(H_2O)_5$ are stabilized in two goblets of 2.

Fig. S3 The XRPD diagrams for complexes: a) for 1, b) for 2.

Fig. S4 Curie plots of 1 and 2 and the best-fit of the data through Curie–Weiss law.

Co-N-Co angle (°)	Bridges	Magnetic	Ref
		coupling	
93.60 and 93.68	Double EO azide and syn, syn carboxylate	$F J = 10.7 cm^{-1}$	1
97.2 and 97.6	Double EO azide and <i>syn, syn</i> carboxylate	$F J = 13.9 cm^{-1}$	2
94.74 and 96.83	Double EO azide and syn, syn carboxylate	$F J = 13.2 cm^{-1}$	3
95.85 and 95.85	Double EO azide and <i>syn, syn</i> carboxylate	$F J = 8.1 \text{ cm}^{-1}$	3
94.54 and 94.76	Double EO azide and <i>syn, syn</i> carboxylate	$F J = 13.8 \text{ cm}^{-1}$	3
95.47 and 97.4	Double EO azide and <i>syn, syn</i> carboxylate	$F J = 10.6 \text{ cm}^{-1}$	4
94.73 and 96.24	Double EO azide and <i>syn,syn</i> carboxylate	$F J = 8.1 cm^{-1}$	5
95.49 and 94.99	Double EO azide and <i>syn, syn</i> carboxylate	F	6
96.29 and 92.23	Double EO azide and <i>syn, syn</i> carboxylate	F	7
92.79 and 93.38	Double EO azide and <i>syn,syn</i> carboxylate	$F J = 13.96 \text{ cm}^{-1}$	8
91.62 and 91.67	Double EO azide and <i>syn, syn</i> carboxylate	F	9
129	EO azide, <i>syn,syn</i> carboxylate and O	F	10
120.74	Double syn, syn carboxylate and EO azide	F	11
114.51	Double syn, syn carboxylate and EO azide	F	12
122	Double syn, syn carboxylate and EO azide	$F J = 54.1 \text{ cm}^{-1}$	13
115.12	Double syn, syn carboxylate and EO azide	$F J = 10.3 cm^{-1}$	14
116.14	Double syn, syn carboxylate and EO azide	$F J = 66.8 \text{ cm}^{-1}$	15
124.37	syn,syn carboxylate and EO azide	F	16
128	syn,syn carboxylate and EO azide	F	17
117.3	syn,syn carboxylate and EO azide	F	18
120.09	EO azide	AF J = -2.98 cm ⁻¹	18
112.3	EO azide	F	19
128.04	syn,syn carboxylate and EO azide	F	20
123.88	syn,syn carboxylate and EO azide	$F J = 7.86 \text{ cm}^{-1}$	21
122.10	syn,syn carboxylate and EO azide	$F J = 2.06 cm^{-1}$	21
112.93	syn,syn carboxylate and EO azide	F	22
127.42	syn,syn carboxylate and EO azide	$F J = 31.0 \text{ cm}^{-1}$	23

Table S2. The Co-N-Co angle and magnetic coupling in some EO bridged cobalt complexes.

1. Y. Ma, J. Y. Zhang, A. L. Cheng, Q. Sun, E. Q. Gao and C. M. Liu, Inorg. Chem., 2009, 48, 6142-6151.

2. T. Liu, Y. Zhang, Z. Wang and S. Gao, Inorg. Chem., 2006, 45, 2782-2784.

3. Q. X. Jia, H. Tian, J. Y. Zhang and E. Q. Gao, Chem. -Eur. J., 2011, 17, 1040-1051.

4. Y. Q. Wang, X. M. Zhang, X. B. Li, B. W. Wang and E. Q. Gao, Inorg. Chem., 2011, 50, 6314-6322.

5. F. Liu, P. Li, W. Gao, X.-M. Zhang and J.-P. Liu, Inorg. Chim. Acta., 2016, 451, 116-122.

6. J.-J. Liu, S.-B. Xia, X. Shen, D. Liu and F.-X. Cheng, J. Solid state Chem., 2019, 275, 88-94.

7. F. C. Liu, M. Xue, H. C. Wang and J. Ou-Yang, Eur. J. Inorg. Chem., 2010, 2010, 4444-4449.

8. Y.-Q. Wen, Y. Ma, Y.-Q. Wang, X.-M. Zhang and E.-Q. Gao, Inorg. Chem. Commun., 2012, 20, 46-49.

 L. Lisnard, P. Mialane, A. Dolbecq, J. Marrot, J. M. Clemente-Juan, E. Coronado, B. Keita, P. de Oliveira, L. Nadjo and F. Secheresse, *Chem. -Eur. J.*, 2007, 13, 3525-3536.

10. L. Lisnard, P. Mialane, A. Dolbecq, J. Marrot, J. M. Clemente-Juan, E. Coronado, B. Keita, P. de

Oliveira, L. Nadjo and F. Secheresse, Chem.-Eur. J., 2007, 13, 3525-3536.

- 11. Y. Q. Wang, A. L. Cheng, P. P. Liu and E. Q. Gao, Chem. Commun., 2013, 49, 6995-6997.
- 12. Y.-Q. Wang, Q.-H. Tan, X.-Y. Guo, H.-T. Liu, Z.-L. Liu and E.-Q. Gao, *RSC Adv.*, 2016, **6**, 72326-72332.
- 13. X. M. Zhang, Y. Q. Wang, K. Wang, E. Q. Gao and C. M. Liu, Chem. Commun., 2011, 47, 1815-1817.
- 14. Y. Ma, X. B. Li, X. C. Yi, Q. X. Jia, E. Q. Gao and C. M. Liu, Inorg. Chem., 2010, 49, 8092-8098.
- 15. Y. Q. Wang, W. W. Sun, Z. D. Wang, Q. X. Jia, E. Q. Gao and Y. Song, *Chem. Commun.*, 2011, **47**, 6386-6388.
- C. J. Milios, A. Prescimone, J. Sanchez-Benitez, S. Parsons and E. K. Brechin, *Inorg. Chem.*, 2006, 45, 7053-7055.
- 17. Q. Yang, J. P. Zhao, W. C. Song and X. H. Bu, Dalton Trans., 2012, 41, 6272-6276.
- M. G. Sommer, R. Marx, D. Schweinfurth, Y. Rechkemmer, P. Neugebauer, M. van der Meer, S. Hohloch, S. Demeshko, F. Meyer, J. van Slageren and B. Sarkar, *Inorg. Chem.*, 2017, 56, 402-413.
- B.-W. Hu, J.-P. Zhao, Q. Yang, X.-F. Zhang, M. Evangelisti, E. C. Sañudo and X.-H. Bu, *Dalton Trans.*, 2010, **39**, 11210-11217.
- 20. S. Hamedani, H. Aghaie, Chinese. J. Struc. Chem., 2015, 34, 1307-1316.
- 21. Z. He, Z.-M.Wang, S. Gao, and Ch.-H. Yan, Inorg. Chem., 2006, 45, 6694-6705.
- 22. Q. Yang, X.-F. Zhang, J.-P. Zhao, B.-W. Hu and X.-H. Bu, *Crystal. Growth Des.*, 2011, **11**, 2839-2845.
- 23. X. M. Zhang, K. Wang, Y. Q. Wang and E. Q. Gao, Dalton Trans., 2011, 40, 12742-12749.