Supporting information Piezoelectric Energy Harvesting of a Bismuth Halide Perovskite Stabilised by Chiral Ammonium Cations

Supriya Sahoo, Nilotpal Deka, Ramamoorthy Boomishankar* Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune – 411008, India CCDC No. 2181247 (1-S-298 K) & 2181248 (1-S-100 K)

Table of contents

S.No.	Details	Page No.		
1	X-ray crystallographic information	2-3		
2	Characterisations	4-5		
3	Dielectric studies	4		
4	1-S-PLA composites and their Piezoelectric	5-10		
	studies			
5	References	11		

Crystallographic details	1-S	1-S
Chemical formula	C ₁₈ H ₂₈ Br ₅ N ₂ Bi	$C_{18} H_{28} Br_5 N_2 Bi$
Formula weight (g/mol)	880.95	880.95
Temperature	100(2)K	298(2)K
Crystal system	Orthorhombic	Orthorhombic
Space group	P ₂₁₂₁₂₁	P ₂₁₂₁₂₁
a (Å); α (°)	7.903(2); 90	8.016(3); 90
b (Å); β (°)	14.943(4); 90	15.184(7); 90
c (Å); γ (°)	21.449(6); 90	21.635(9); 90
V (ų); Z	2533.0(12); 4	2633.4(19); 4
ρ (calc.) g cm ⁻³	2.310	2.222
μ (Mo K _a) mm ⁻¹	14.854	14.288
2θ _{max} (°)	50.04	54.04
R(int)	0.2107	0.1010
Completeness to θ	99.8	99.7
Data / param.	4478/242	4648/241
GOF	1.102	1.123
R1 [F>4σ(F)]	0.0773	0.0448
wR2 (all data)	0.0933	0.0764
max. peak/hole (e.Å ⁻³)	1.481/-1.522	1.483/-1.306

 Table S1. X-ray Crystallographic data for 1-S.

Figure S1. (a) Asymmetric unit and (b) packing diagram of 1-S along a-axis at 100 K.

D-H…A	d(H…A) Å	d(D-A) Å	<(DHA)	Symmetry transformations		
				to generate equivalent		
				atoms		
N(11)-H(11D)…Br4	2.5205(25)Å	3.4234(238) Å	172.887(1492)	-0.5+x, 0.5-y, 1-z		
N(11)-H(11F)…Br2	2.5862(26)Å	3.4088(214) Å	150.45(129)	0.5+x, 0.5-y, 1-z		
N(21)-H(21D)…Br4	2.6226(26)Å	3.4911(255) Å	159.588(1597)	-0.5+x, 0.5-y, 1-z		
N(21)-H(21F)…Br1	2.5001(32)Å	3.3726(239) Å	161.443(1499)	-0.5+x, 0.5-y, 1-z		

Table S2. Hydrogen bonding parameters for 1-S.

Figure S2. Non-classical N-H···Br hydrogen bonding interactions in 1-S at 100 K.

Figure S4. The thermogravimetric and differential thermal analysis profiles of 1-S.

Figure S5. (a)Temperature dependant dielectric loss plot and (b) Frequency dependant dielectric loss plot of **1-S**.

Figure S6. UV-Visible diffuse reflectance spectrum of **1-S**; its corresponding Tauc plot is displayed in the inset.

Table S3. Details about the preparation of various weight percentage (wt %) **1-S-**PLAcomposites.

Composite (wt%)	1-S (in mg)	1-S + PLA (in mg)
5 wt%	28.94	578.94
10 wt%	61.11	611.11
15 wt%	97.05	647.05
20 wt%	137.50	687.50

Figure S7. The powder X-ray diffraction pattern and the characteristic *hkl* peaks for compound **1-S** and the 20 wt % **1-S-**PLA.

Figure S8. The FE-SEM images of 1-S-PLA composites. The figures a, b, c, and d correspond to 5, 10, 15, and 20 wt % 1-S-PLA composites respectively.

Figure S9. Output voltage profiles of all the 1-S-PLA composite films.

Figure S10. Frequency dependent dielectric permittivity and (b) Frequency dependent dielectric loss plot of neat PLA and all 1-S-PLA films.

Figure S11. The comparative d_{33} values for all **1-S-**PLA composite films and neat PLA film. The solid lines the connecting the points are a guide the eye.

Figure S12. Output current profile of 1-S-PLA composite films.

Figure S13. The calculated output currents of all the 1-S-PLA composite films.

Table S4. Summary of maximum piezoelectric energy harvesting outputs of 15 wt%	1-S-PLA
composite devices.	

Parameters	Energy Harvesting Outputs		
Area of the Device	3.6 cm ²		
Maximum V _{PP}	10.4 V		
Maximum I _{PP}	2.2 μΑ		
Maximum CD	0.5 μA/cm ²		
Maximum PD	5.26 μW/cm ²		
Energy Stored in 100 µF Capacitor	58.25 μJ		
Charge Stored in 100 μF Capacitor116.5 μC			

Hybrid Composite	Output	Current/Current	Power/Power	Active	References
Devices	Voltages	density	density	area	
MAPbl ₃ -PVDF	9.43	0.76 μA cm ⁻²	-	1 x 1 cm ²	1
MAPbBr ₃ -PVDF	5	60 nA	0.28 μW cm ⁻²	2.4 x 1.5	2
				cm ²	
MAPbl ₃ -PDMS	1.0	50 nA cm ⁻²	-	1 x 1 cm ²	3
FAPbBr ₃ -PDMS	4	-	-	1 x 1 cm ²	4
CsPbBr ₃ /PVDF	10.3	1.29 μA cm ⁻²	3.31 μW	1 x 1 cm ²	5
PVDF-PLLA-SnO ₂ NF-	4.82	29.7 nA	-	0.25 x	6
MAPbl ₃				0.25 cm ²	
SnO ₂ NF–MAPbI ₃	1.02	10.32 nA	-	0.25 x	6
				0.25 cm ²	
[BnNMe ₃] ₂ CdBr ₄ /PDMS	52.9	0.23 μA cm ⁻²	13.8 μW cm ⁻²	3 x 3 cm ²	7
[BnNMe ₂ ⁿ Pr] ₂ CdBr ₄ /PDMS	63.8	0.59 μA cm ⁻²	37.1 μW cm ⁻²	3 x 3 cm ²	7
(TMFM)FeBr ₄	2.2	-	-	-	8
[Ph ₃ MeP] ₄ [Ni(NCS) ₆]/TPU	19.29	3.59 μA cm ⁻²	2.51 mW cm ⁻³	1.3 x 3	9
			(50.26 μW	cm ²	
			cm ⁻²)		
[Ph ₃ MeP] ₂ [CuCl ₄]/TPU	25	1.1 μA cm ⁻²	14.1 μW cm ⁻²	1.2 x 3	10
				cm ²	
15 wt% 1-S-PLA	10.4	0.5 μA cm ⁻²	5.26 µW cm ⁻²	1.2 x 3	This work
				cm ²	

Table S5. Comparison of output device performances of known energy harvesters based on polymer composites of organic-inorganic hybrid materials.

Note: $MAPbI_3 = methylammonium lead iodide; PVDF = polyvinylidene difluoride; PDMS = polydimethysiloxane; FAPbBr₃ = formamidinium lead bromide; PLLA = poly(L-lactic acid); SnO₂ = tin oxide; NF = nanofiber; [BnNMe₃]₂CdBr₄ = N,N,N-trimethyl-1-phenylmethanaminium cadmium(II) bromide; [BnNMe₂ⁿPr]₂CdBr₄ = N-benzyl-N,N-dimethylpropan-1-aminium cadmium(II) bromide; (TMFM)FeBr₄ = trimethylfluoromethylammonium iron(III)bromide, TPU = thermoplastic polyurethane, PLA = polylactic acid .$

Figure S14. The comparative output (a) voltage and (b) current data for all the **1-S-**PLA composite devices under various load resistances.

Figure S15. Fatigue test for the 15 wt% 1-S-PLA composite device up to 10000 cycles.

Figure S16. Stored voltages in a 100 µF capacitor by employing the 15 wt % **1-S-**PLA composite device at different time intervals.

References

- 1. V. Jella, S. Ippili, J.-H. Eom, J. Choi and S.-G. Yoon, *Nano Energy*, 2018, **53**, 46-56.
- 2. A. Sultana, M. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya and D. Mandal, *Nano Energy*, 2018, **49**, 380-392.
- 3. Y.-J. Kim, T.-V. Dang, H.-J. Choi, B.-J. Park, J.-H. Eom, H.-A. Song, D. Seol, Y. Kim, S.-H. Shin, J. Nah and S.-G. Yoon, *Journal of Materials Chemistry A*, 2016, **4**, 756-763.
- 4. R. Ding, H. Liu, X. Zhang, J. Xiao, R. Kishor, H. Sun, B. Zhu, G. Chen, F. Gao, X. Feng, J. Chen, X. Chen, X. Sun and Y. Zheng, *Advanced Functional Materials*, 2016, **26**, 7708-7716.
- 5. Y. Li, M.-h. Xu, Y.-s. Xia, J.-m. Wu, X.-k. Sun, S. Wang, G.-H. Hu and C.-x. Xiong, *Chemical Engineering Journal*, 2020, **388**, 124205.
- 6. R. Tusiime, F. Zabihi, M. Tebyetekerwa, Y. M. Yousry, Y. Wu, M. Eslamian, S. Yang, S. Ramakrishna, M. Yu and H. Zhang, *Journal of Materials Chemistry C*, 2020, **8**, 2643-2658.
- 7. S. Deswal, S. K. Singh, P. Rambabu, P. Kulkarni, G. Vaitheeswaran, B. Praveenkumar, S. Ogale and R. Boomishankar, *Chemistry of Materials*, 2019, **31**, 4545-4552.
- 8. Y. Zhang, X.-J. Song, Z.-X. Zhang, D.-W. Fu and R.-G. Xiong, *Matter*, 2020, **2**, 697-710.
- 9. T. Vijayakanth, F. Ram, B. Praveenkumar, K. Shanmuganathan and R. Boomishankar, Angewandte Chemie International Edition, 2020, **59**, 10368-10373.
- 10. S. Sahoo, T. Vijayakanth, P. Kothavade, P. Dixit, J. K. Zaręba, K. Shanmuganathan and R. Boomishankar, *ACS Materials Au*, 2022, **2**, 124-131.