Supporting information: Crystal structure of $[CH(NH_2)_2]Pb(C_2H_6OS)Cl_3$ N. Saito et al.

Supporting information

attached to

Crystal structure of formamidinium–lead-chloride–dimethyl sulfoxide and phase relationship of related crystalline systems

Noriko Saito, Yoshitaka Matsushita, Takeo Ohsawa, Hiroyo Segawa and Naoki Ohashi*

National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

*Corresponding author: OHASHI.Naoki@nims.go.jp

S-1 Structure parameters optimization by DFT total energy calculations

Here, the crystal structure of some compounds calculated in this study are shown in **Tables** from **S-I** to **S-VIII**. In this study, a plane-wave-based pseudo-potential method implemented in CASTEP code,¹ a part of the Materials Studio Package (Dassault Systèmes, Tokyo, Japan), was adopted for optimization of crystal structures based on the density-functional-theory. The norm-conserved pseudopotentials generated by the CASTEP code was used and a generalized gradient approximation optimized for solids (PBESol)² was employed as the exchange-correlation functional for self-consistent total energy calculations. The plane-wave cut-off energy was set to 1050 eV and two sampling points on a Monkhorst–Pack grid^{3,4} was involved in total energy calculations. Structural optimization was performed with the Broyden–Fletcher–Goldfarb–Shanno scheme.⁵

For PbCl₂,⁶ CsCl,⁷, DMSO,⁸ and orthorhombic CsPbCl₃,⁹ the initial structural models for optimization were constructed refereeing experimentally determined structures. However, some structures, *i.e.* FACl, was purely theoretically determined, as any information about crystal structure of this compound could not be found by the authors. A super-cell model was employed for calculation on FAPbCl₃ crystallized in perovskite-type structure in order to describe disordered orientation of FA⁺. Particularly, the space group of *Pccn* (*D*_{2*h*}) was applied for the model of FAPbCl₃ to avoid spontaneous polarization. The initial model for CsPbCl₃-DMSO was constructed by simply substituting Cs⁺ ion for FA⁺ ion in FAPbCl₃-DMSO lattice experimentally determined in this study.

S-2 Mulliken charge of elements in FAPbCl₃-DMSO

The effective charge of elements in FAPbCl₃-DMSO was evaluated by Mulliken charge analysis for the structure optimized by DFT calculation. The result of charge analysis is show in **Table S-IX**.

S-3 Thermal desorption from FAPbCl₃-DMSO

Decomposition of FAPbCl₃-DMSO at elevated temperature was examined by measuring thermal desorption spectrometry (TDS). The samples, crystalline FAPbCl₃-DMSO was set in an ultra-high-vacuum chamber equipped with high temperature stage and quadrupole-mass-spectrometer (QMS). The sample was heated with the high temperature stage from room temperature to 150°C with a constant rump rate and the temperature was hold at 150°C. The desorbed elements and molecules were analyzed with QMS.

Figure S-I shows TDS signal for FAPbCl₃-DMSO, particularly the signal profile for m/z=78 and 80. There are two observed profile and one calculated profile. Here, it was assumed that observed signal at m/z=78 is originated in ${}^{12}C_{2}{}^{1}H_{6}{}^{32}S^{16}O$. As the natural abundance of ${}^{32}S$ and ${}^{34}S$ are 95.029% and 4.218%, respectively, expected signal intensity for ${}^{12}C_{2}{}^{1}H_{6}{}^{34}S^{16}O$ (DMSO) can be calculated from the observed signal intensity for ${}^{12}C_{2}{}^{1}H_{6}{}^{32}S^{16}O$. As the observed and calculated signal intensity for m/z=80 were in good agreement, we can safely identify that m/z=78 and 80 are for ${}^{12}C_{2}{}^{1}H_{6}{}^{32}S^{16}O$. Hence, the TDS signal at m/z=80 can be used for discussion on desorption of DMSO.

Figure S-II shows TDS signal for FAPbCl₃-DMSO, particularly the signal profile for m/z=35 and 37. Here, it was assumed that m/z=35 and 37 are for ³⁵Cl and ³⁷Cl. As natural abundance of ³⁵Cl and ³⁷Cl are 75.777% and 24.237%, the profile for m/z=35 can be calculated from the observed profile for m/z=37. As shown in the figure, the calculated and observed profile for m/z=35 obviously differ at relatively low temperature range. Hence, the difference between observed and calculated signal are also plotted. Here, it has to be noted that the difference between observed and calculated signal are also plotted. Here, it has to be noted that the difference between observed and calculated signal are also plotted. Here, it has to be noted that the difference between observed and calculated signal for m/z=35 (purple line) looked very similar to the profile for m/z=78 and 80 shown in Fig. S-I. As another possible assignment for m/z =35 is ³²S¹H₃, ³⁴S¹H, and ³²S²H¹H, the difference profile can be attributed to those surfer hydride fragments. On the other hand, the observed and calculated profile at m/z=35 are in good agreement at higher temperature, the observed profile for m/z=37 was identified to ³⁷Cl, and that for m/z=37 to S-H fragment at lower temperature and ³⁵Cl fragment at higher temperature. Hence, the signal at m/z=37 can be regarded as the desorption profile for Cl. The critical difference between Cl and CMSO in terms of TDS profile was that desorption of DMSO was completed at T<100°C but Cl continuously desorbed at T>100°C. It is presumable that desorption of Cl at T>100°C is due to gradual evaporation of FAPbCl₃ from surface.

Figure S-III shows TDS signal for FAPbCl₃-DMSO, particularly the signal profile for m/z=12, 14, 16 and 28. The signal for m/z= 12 and 14 at T<100°C looked very similar to the signal for DMSO shown in Fig. S-I. Hence, signal at m/z=12 and 14, particularly at T<100°C should be identified as ¹²C and ¹²C¹H₂ originated in desorption of DMSO. However, the behavior of the signal at m/z=12 and 14 was obviously different from that of DMSO (m/z=80) at higher temperature, T>100°C. As described above, desorption of DMSO was completed at T<100°C. However,

N. Saito et al.

signal intensity for m/z=12 and 14 decreased very slowly even at T>100°C. Hence, origin of the signal at m/z=12 and 14 was not DMSO. The long tail behavior at high temperature was commonly seen for the signal at m/z=16 and 28. Further, behaviors of the signal at m/z=16 and 28 differ from those of DMSO related fragments. Therefore, it is presumable that m/z=16 and 28 were not dominated by desorption of DMSO. Here, it can be assumed that the m/z=16 is for ¹⁴N¹H₂ and m/z=28 for ¹⁴N₂ and/or ¹²C₂¹H₄. This identification suggests us that FA is remained in the lattice even at T>100°C. As the sample was corrected even after holding at T=150°C, gradual desorption of Cl and FA continued at T>100°C was from the surface and was not due to decomposition.

Figure S-IV shows SEM image of the sample before and after TDS measurement. The crushed FAPbCl₃-DMSO crystal (left) was used as specimen for TDS measurement is compared with the residual solid collected after TDS measurement. As mentioned heating in vacuum induced decomposition of FAPbCl₃-DMSO by desorption of DMSO. The grains in the residual powder shows porous feature, which was resulting from formation of paths for desorption of DMSO.

References

- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, First Principles Methods using CASTEP, Z. Kristallogr., 2005, 220, 567–570.
- J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, *Phys. Rev. Lett.*, 2008, 100, 136406.
- 3. H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-Zone Integrations, *Phys. Rev.*, 1976, **B13**, 5188-5192.
- J. D. Pack and H. J. Monkhorst, "Special Points for Brillouin-Zone Integrations"—a Reply, *Phys. Rev.*, 1977, B 16, 1748-1749.
- 5. B. G. Pfrommer, M. Cote, S. G. Louie and M. L. Cohen, Relaxation of Crystals with the Quasi-Newton Method, *J. Comput. Phys.*, 1997, **131**, 233-2401.
- 6. M. Lumbreras, J. Protas, S. Jebbari, G. J. Dirksen and J. Schoonman, Structure and Ionic Conductivity of Mixed Lead Halides PbCl_{2x}Br_{2(1-x)}. II, *Solid State Ionics*, 1986, **20**, 295-304.
- 7. M. Sist, K. F. F. Fischer, H. Kasai and B. B. Iversen, Low-Temperature Anharmonicity in Cesium Chloride (CsCl), *Angew Chem Int Ed Engl.*, 2017, **56**, 3625-3629.
- 8. R. Gajda and A. Katrusiak, Electrostatic Matching versus Close-Packing Molecular Arrangement in Compressed Dimethyl Sulfoxide (DMSO) Polymorphs, J. Phys. Chem., 2009, **B113**, 2436–2442.
- 9. L. Zhang, L. Wang, K. Wang and B. Zou, Pressure-Induced Structural Evolution and Optical Properties of Metal-Halide Perovskite CsPbCl₃, *J. Phys. Chem.*, 2018, C122, 15220–15225.

Table S-I Crystal structure of FAPbCl₃-DMSO under symmetrical restriction with $P2_1/c$.

Monoclinic, $P2_1/c$	
<i>a</i> = 9.7797 Å	$\alpha = 90^{\circ}$
<i>b</i> = 14.0003 Å	$\beta = 115.2331^{\circ}$
c = 8.9975 Å	$\gamma = 90^{\circ}$

Fractional atomic coordinates

	x	<i>y</i>	Z
Pb	0.16041	0.61248	0.61325
S	0.14901	0.38669	0.77283
0	0.26027	0.46832	0.79576
Cl1	0.46516	0.63439	0.74795
Cl2	0.13419	0.46229	0.39167
C13	0.84084	0.23046	0.61889
N1	0.51570	0.60185	0.42568
N2	0.43671	0.60330	0.14195
C1	0.10184	0.39755	0.94288
C2	0.26165	0.28150	0.83640
C3	0.41998	0.62457	0.27536
H1A	0.03088	0.33657	0.94313
H1B	0.03600	0.46385	0.92090
H1C	0.20719	0.40126	1.05666
H2A	0.18597	0.22196	0.83181
H2B	0.35130	0.29202	0.96153
H2C	0.31122	0.26759	0.74932
H1N1	0.61740	0.56820	0.45272
H1N2	0.49167	0.61884	0.52418
H2N1	0.53017	0.56648	0.14703
H2N2	0.35848	0.63033	0.03237
H3	0.31852	0.66441	0.26148

Triclinic, P1					
a = 9.5262 Å		$\alpha = 90.0077^{\circ}$			
b = 14.1760	$b = 14.1760 \text{ Å}$ $\beta = 114.5$		$\beta = 114.5148^{\circ}$	4.5148°	
c = 8.3379 Å	79 Å $y = 89.9838^{\circ}$				
Fractional ator	mic coordinates		,		
	x	v			
Pb1	0.16419	0.8	9226	0.11741	
Pb2	0.16401	0.6	60640	0.61724	
Pb3	-0.16298	0.1	0657	0.88312	
Pb4	-0.16360	0.3	9220	0.38301	
Cs1	0.39490	0.8	9796	0.74847	
Cs2	0.60624	0.1	0019	0.25150	
Cs3	0.39452	0.6	50025	0.24805	
Cs4	0.60613	0.3	9900	0.75184	
01	0.22926	0.4	9301	0.86527	
02	-0.22683	0.9	9341	0.63504	
03	-0.22897	0.5	0573	0.13536	
04	0.22774	0.0	0539	0.36557	
S1	0.13443	0.0	9665	0.31706	
S2	0.13554	0.4	0190	0.81698	
S3	-0.13456	0.5	9656	0.18355	
S4	-0.13295	0.9	0237	0.68345	
Cl1	0.47158	0.6	52886	0.71348	
Cl2	0.17734	0.4	3928	0.43756	
C13	-0.16569	0.2	24324	0.63216	
Cl4	-0.47066	0.1	2775	0.78698	
C15	-0.17630	0.9	3925	0.06242	
C16	0.16607	0.7	4297	0.86841	
Cl7	-0.47106	0.3	7042	0.28722	
C18	-0.17628	0.5	5940	0.56306	
C19	0.16582	0.7	5538	0.36763	
Cl10	0.47193	0.8	37033	0.21394	
Cl11	0.17813	0.0	5971	0.93862	
Cl12	-0.16591	0.2	.5594	0.13146	
<u>C1</u>	0.10415	0.3	57441	1.00797	
C2	-0.10152	0.8	37490	0.49246	
C3	-0.26630	0.8	30942	0.66113	
C4	0.10209	0.1	2408	0.50748	
C5	-0.10314	0.6	52355	-0.00760	
<u>C6</u>	-0.26747	0.6	8983	0.16124	
C7	0.26908	0.3	0898	0.83945	
<u>C8</u>	0.26855	0.1	.8930	0.34040	
H1	0.21299	0.2	25715	0.34367	
H2	0.37166	0.1	7767	0.46452	
H3	0.04574	0.3	0568	0.98755	
H4	0.02812	0.4	2826	1.02411	
H5	0.21623	0.3	5/358	0.12355	
H7	0.21335	0.2	4126	0.84301	
H8	0.37251	0.3	2041	0.96331	
H9	0.29395	0.3	01151	0.72211	
H10	0.29385	0.1	8657	0.22337	

Table S-II Optimized crystal structure of CsPbCl₃-DMSO, where Cs⁺ was substituted for FA⁺ in FAPbCl₃-DMSO.

H11	0.21372	0.12408	0.62371	
H12	-0.04333	0.80610	0.51252	
H13	-0.02535	0.92867	0.47643	
H14	-0.21361	0.87427	0.37689	
H15	-0.21029	0.74170	0.65809	
H16	-0.36965	0.82070	0.53712	
H17	-0.29133	0.81221	0.77835	
H18	-0.04367	0.69190	0.01263	
H19	-0.02809	0.56909	-0.02394	
H20	-0.21532	0.62483	0.87697	
H21	-0.21134	0.75742	0.15785	
H22	-0.37098	0.67857	0.03739	
H23	-0.29235	0.68734	0.27858	
H24	0.04475	0.19315	0.48766	
H25	0.02484	0.07062	0.52218	
Schematic structure				

Table S-III	Optimized crystal st	ructure of CsPbCl ₃ crystallized	d in orthorhombic symmetry.
-------------	----------------------	---	-----------------------------

Orthorhombic, Pbnm	
a = 7.8565 Å	$\alpha = 90^{\circ}$
<i>b</i> = 7.9536 Å	$\beta = 90^{\circ}$
c = 11.0290 Å	$\gamma = 90^{\circ}$

Fractional atomic coordinates

	x	У	Z
Pb	0.50000	0.00000	0.00000
Cs	0.98032	0.95097	0.25000
Cl1	0.10169	0.53544	0.25000
C12	0.78432	0.21676	0.04335

0 1 1 1	. D		Ì	
Orthorhomb	ic, Pccn			
a = 11.7054 Å		$\alpha = 90^{\circ}$		
<i>b</i> = 11.4073	Å		$\beta = 90^{\circ}$	
c = 12.4175	Å		$\gamma = 90^{\circ}$	
Fractional ato	mic coordinates			
	x	y		Z
Pb1	0.25000	0.25	000	0.48049
Pb2	-0.25000	0.25	000	0.48900
Cl1	0.25000	0.25	000	-0.23638
Cl2	0.00247	0.24	968	-0.01175
C13	0.23949	0.49805		-0.04501
Cl4	-0.25000	0.25000		0.19433
С	-0.48006	0.50086		-0.25167
N1	-0.52755	0.41277		-0.30304
N2	-0.52174	0.54	661	-0.16315
H1	-0.48496	0.61753		-0.12603
H2	-0.40104	0.53720		-0.28565
H3	-0.59869	0.51964		-0.13007
H4	-0.49153	0.37880		-0.37175
H5	-0.59991	0.37	166	-0.27466

Table S-IVOptimized crystal structure of FAPbCl3, super-cell, under structural restriction of *Pccn*symmetry to avoid spontaneous polarization.

Orthorh	ombic, Pnam			
a = 7.52	287 Å		$\alpha = 90^{\circ}$	
<i>b</i> = 9.06	531 Å		$\beta = 90^{\circ}$	
c = 4.48	05 Å		$\gamma = 90^{\circ}$	
Fractiona	l atomic coordinates			
	x	у		Z
Cl1	0.85842	0.07895		0.25000
Cl2	0.48318	0.84096		0.25000
Pb	0.26279	0.09440		0.25000
		Schematic	e structure	
đ				

Table S-V Optimized crystal structure of PbCl₂.

Table S-VI Optimized crystal structure of CsCl

Cubic, <i>Pm3m</i>	
a = 4.0726 Å	$\alpha = 90^{\circ}$
<i>b</i> = 4.0726 Å	$\beta = 90^{\circ}$
c = 4.0726 Å	$\gamma = 90^{\circ}$

Monoclinic, P	$2_{1}/c$		
<i>a</i> = 9.6732 Å		$\alpha = 9$	0°
<i>b</i> = 8.3902 Å		$\beta = 4$	5.9126°
<i>c</i> = 9.4058 Å		$\gamma = 9$	0°
Fractional atom	ic coordinates		
	x	<i>y</i>	
Cl	1.25051	0.40686	0.16259
С	0.67335	0.27707	0.56568
N1	0.80767	0.35239	0.54157
N2	0.48831	0.27968	0.72661
H1	0.71884	0.20223	0.44321
H1A	0.95013	0.34893	0.40719
H1B	0.77545	0.42752	0.64960
H2A	0.39705	0.21848	0.72351
H2B	0.42838	0.33744	0.85679

Table S-VII Optimized crystal structure of FACI.

Monoclinic,	$P2_{1}/c$		
a = 5.2160 Å		$\alpha = 90^{\circ}$	
<i>b</i> = 7.2517 Å		$\beta = 94.2831^{\circ}$)
c = 11.3532	Å	$\gamma = 90^{\circ}$	
Fractional ator	mic coordinates		
	x	<i>y</i>	Z
S	0.32445	0.09735	0.29765
0	0.61174	0.09197	0.32298
C1	0.19417	-0.09124	0.37547
C2	0.20490	0.27933	0.38541
H1A	0.26824	-0.08734	0.46914
H1B	0.25229	-0.21811	0.33107
H1C	-0.01695	-0.07649	0.36654
H2A	0.28368	0.26344	0.47752
H2B	0.26599	0.40996	0.34673
H2C	-0.00664	0.26906	0.37871

Table S-VIII Optimized crystal structure of crystalline DMSO.

Element	Charge / e
Н	0.31
С	-0.54
Ν	-0.72
0	-0.93
S	1.12
Cl	-0.58
Pb	1.16

 Table S-IX
 Mulliken charge of elements in FAPbCl₃-DMSO

Figure S-I TDS profile of FAPbCl₃-DMSO, particularly the fragment with m/z=78 and 80. One of two profiles for m/z=80 was experimentally observed (green line) and the other (red line) was calculated by assuming that observed signal at m/z=78 and calculated signal at m/z=80 correspond to ${}^{12}C_{2}{}^{1}H_{6}{}^{32}S^{16}O$ and ${}^{12}C_{2}{}^{1}H_{6}{}^{34}S^{16}O$.

Figure S-II TDS profile of FAPbCl₃-DMSO, particularly the fragment with m/z=35 and 37. There are two profiles for m/z=35. One was observed (green line) and the other (orange line) was calculated by assuming the fragment with m/z=35 and 37 were for ³⁵Cl and ³⁷Cl. In addition, the difference between observed and calculated profile for m/z=35 (purple line) is shown.

Figure S-III TDS profile of FAPbCl₃-DMSO, particularly observed behavior for the fragment with m/z=12, 14, 16, and 28.

Figure S-IV SEM image of crushed FAPbCl₃-DMSO crystal used for TDS measurement (left) and the residual solid after TDS measurement.