Electronic Supplementary Information (ESI) for

New Insights into the Nucleation of Magnesium Hydroxide and the Influence of Poly(Acrylic Acid) during the Early Stages of Mg(OH)₂ Crystallisation

Johanna Scheck,^{a#} John K. Berg,^{a#} Markus Drechsler,^b Andreas Kempter,^c Alexander E. S. Van Driessche,^d Helmut Cölfen,^a Denis Gebauer,^{e*} and Matthias Kellermeier^{f*}

^a Physical Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany.

^b Bavarian Polymer Institute (BPI), Keylab "Electron and Optical Microscopy", University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.

^c Inorganic Materials & Synthesis, BASF SE, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

^d Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC – University of Granada, E-18100 Armilla, Granada, Spain.

^e Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, D-30167 Hannover, Germany.

^f Material Science, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.

*Corresponding authors: gebauer@acc.uni-hannover.de; matthias.kellermeier@basf.com

[#] These authors contributed equally to this work

Figure S1. Evolution of the molar ratio of bound magnesium and hydroxide ions upon continuous addition of 20 mM MgCl₂ solution (at a rate of 0.01 mL/min) into a reservoir of water (initially 50 mL) containing no (black line) or 10 ppm (red line) poly(acrylic acid) (cf. Figures 1b and 4b in the main text). Note that the Mg²⁺/OH⁻ ratio in the associated species increases during the prenucleation stage from ca. 0.3 to >2.2 at the time of nucleation in the additive-free experiment, while values up to 3.0 are reached in the presence of PAA. After nucleation, the Mg²⁺/OH⁻ ratio decreases rapidly and approaches the expected level of 0.5, whereby any remaining deviations from the 1:2 stoichiometry are tentatively ascribed to the ideal treatment of the non-ideal solutions (cf. Figure S3).

Figure S2. Plot of the molar amounts of Mg^{2+} , $MgCI^+$ and $MgOH^+$ predicted to occur in solution at pH 11.0 during titration of 50 mL water with 20 mM $MgCI_2$ at a rate of 0.01 mL/min (cf. Figure 1a in the main text). Calculations were performed for the pre-nucleation regime (i.e. up to the maximum in Figure 1a) with the PHREEQC software package^{S1} using the Thermoddem database^{S2} and excluding equilibration with atmospheric CO₂.

Figure S3. Development of the total ionic strength (grey line, left y-axis) and the activity coefficients of magnesium (full red line, right y-axis) and hydroxide (dashed red line, right y-axis) ions during titration of 50 mL water with 20 mM MgCl₂ at a rate of 0.01 mL/min and a constant pH of 11.0 (cf. Figure 1a in the main text). The ionic strength was calculated based on the dosed amounts of MgCl₂ and NaOH, assuming complete dissociation and no complexation. Activity coefficients (γ) were obtained from solution speciation modeling performed with the PHREEQC software package^{S1} using the Thermoddem database^{S2} and excluding equilibration with atmospheric CO₂. Note that the deviation from ideality ($\gamma \approx 1$) increases in the course of the titration experiment and is more pronounced for the divalent magnesium cation, which most likely accounts for the parallel offset of the n_{bound}(Mg²⁺) and n_{bound}(OH⁻) profiles after nucleation in Figure 1b of the main text (considering that lower activity coefficients will lead to stronger apparent binding for ideal treatment, as described in detail elsewhere^{S3}).

References

- S1. D. L. Parkhurst, User's Guide to PHREEQC : a Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations, U.S. Geological Survey, Lakewood, 1995.
- S2. P. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet, A. Fabbri and E. C. Gaucher, *Appl. Geochem.*, 2012, **27**, 2107-2116.
- S3. M. Kellermeier, A. Picker, A. Kempter, H. Cölfen and D. Gebauer, *Adv. Mater.*, 2014, **26**, 752-757.