Low-temperature synthesis of NaRE(WO$_4$)$_2$ films via sacrificial conversion from the layered rare-earth hydroxides, phase/morphology evolution, and photoluminescence

Xiaoli Wu1,2,3,*, Haocheng Dong1, Sen Qin1, Yongping Guo1

1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China;
2 Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China;
3 Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi; Guilin University of Technology, Guilin 541004, China;

*Corresponding author

E-mail address: wuxiaoli@glut.edu.cn
Fig. S1 XRD patterns (a) and FT-IR spectra (b) of NaLa(WO₄)₂ films obtained via further heat treatment at 150 °C, 300 °C, and 500 °C.

Fig. S2 XRD patterns of anion exchanged films prepared with different concentration of Na₂WO₄ solutions at 100 °C.
Fig. S3 XRD patterns of anion exchanged films synthesized prepared with 1.5M Na$_2$WO$_4$ solutions at different temperatures.

Fig. S4 SEM morphologies of anion exchanged films synthesized prepared with 1.5M Na$_2$WO$_4$ solutions at different temperatures.
Fig. S5 XRD patterns of the NaRE(WO$_4$)$_2$ (RE=Tb, Dy, Ho and Y) films prepared with 2M Na$_2$WO$_4$ solution at 100 °C for 6h.

Fig. S6 FE-SEM images of the NaRE(WO$_4$)$_2$ (RE=Tb, Dy, Ho and Y) films prepared with 2M Na$_2$WO$_4$ solution at 100 °C for 6h.