Supplementary Information

Two multifunctional Cu(II) coordination complexes with mixed ligands as efficient catalysts for oxygen evolution reaction and photocatalytic degradation of methyl orange azo dyes

Yang-Hua Li^a, Yu-Qi Liu^{a*}, Si-Yu Dai ^a, Nan-Hao Jin^{a, b}, Xin-Ying Wang^{a*}, Han Chen^a, Xiao-Ming Liu^a, Yue Zhao^a, Hui-Long Luo^c, Wei Li ^{a, b}

The corresponding formula and calculation method

The Tafel plot can be calculated by the linear Tafel equation:

 $\eta = a \times \log(j) + b$

where a is the Tafel slope, j and η are the catalytic current density and overpotential, respectively.

The electrochemically active surface area (ECSA) of the complexes has the following relationship to the electric double layer capacitance:

 $EASA = C_{dl}/C_s$

The electrochemical double layer capacitance (C_{dl}) is calculated by measuring the relevant CV curves at different scan rates (10 to 50 mV/s) in a non-Faraday region. The value of C_{dl} is the slope of the plot of capacitive current as a function of scan rate. The C_s is the specific capacitance of an atomically smooth surface of the material.

The turnover frequency (TOF) value has been measured via equation:

 $TOF = j \times A / (4 \times F \times m / M)$

where *j* is the current density (A cm⁻²) at a given overpotential, *A* is the loading area of the electrode (cm²), *F* is Faraday constant = 96485 (C mol⁻¹), *m* is the mass per square centimeter of the catalyst, and *M* is the molecular weight of the catalyst, respectively.

E-mail address:liuyuqi7547@163. com (Y. Q. Liu); 1447448766@qq.com (X. Y. Wang)

^a Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China

^b Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China

^c Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, P. R. China

^{a*} Corresponding author. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China

According to the Kubelka-Munk function (F), the band gap can be calculated by the following equations:

$$F = (1 - R)^2 / 2R$$
$$(Fhv)^n = B(hv - Eg)$$

where *R* is the reflectance of an infinitely thick layer at a given wavelength, *h* is the Plank's constant, *v* is the frequency of light, *Eg* is the optical bandgap energy of the material, and factor *B* depends on the transition probability assumed to be as constant within the optical frequency range, n = 2 or 1/2 represent the direct and indirect transition, respectively.

The degradation efficiency of MO is defined as follows:

Degradation efficiency = $(1-(C_t/C_0)) \times 100\%$

Where C_0 and C_t are the concentrations of MO solution when photocatalytic reaction at time 0 min and t min, respectively.

Fig. S2 The IR spectra for 2.

Fig. S3 EDS mapping images of 1.

Fig. S4 EDX spectrum of 1.

Fig. S5 EDS mapping images for 2.

Fig. S7 Cyclic voltammetry (CV) curve in a non-Faraday region. (a) Corresponds to 1. (b)

Corresponds to ${\bf 2}$.

The corresponding parameters of crystallographic data, selected bonds, angles and hydrogen bonds

Identification code	1	2		
Empirical formula	C ₂₀ H ₂₀ CuN ₄ O ₇	C ₄₇ H ₅₃ Cu ₂ N ₁₁ O ₁₃		
Formula weight	491.94	1107.08		
Temperature/K	296.15	296.15		
Wavelength	0.71073	0.71073		
Crystal system	monoclinic	monoclinic		
Space group	P21/n	C2/c		
Unit cell dimensions	a = 0.85793(10) nm, α = 90 ° B = 1.00590(11) nm, β = 92.552(2) ° C = 2.4193(3) nm, γ = 90 °	$\label{eq:a} \begin{aligned} &a = 2.68482(18) \text{ nm}, \ \alpha = 90 \ ^{\text{o}} \\ &b = 1.03399(7) \text{ nm}, \ \beta = 125.809(10) \ ^{\text{o}} \\ &c = 2.2165(2) \text{ nm}, \ \gamma = 90 \ ^{\text{o}} \end{aligned}$		
Volume/nm ³	2.0857(4)	4.9900(7)		
Z	4	4		
Calculate density/g/cm ³	1.567	1.474		
Absorption coefficient/mm ⁻¹	1.099	0.928		
F(000)	1012.0	2296.0		
Crystal size/mm ³	0.11 imes 0.1 imes 0.08	$0.16\times0.15\times0.12$		
Theta range for data collection	3.37 ° to 50.028 °	3.37 ° to 50.028 °		
Inday range	$-10 \le h \le 10, -11 \le k \le 11,$	$-29 \le h \le 31, -12 \le k \le 12,$		
index range	$-21 \le l \le 28$	$-26 \le 1 \le 26$		
Reflections collected	10336	12419		
Independent reflection	3667 [R(int)= 0.0269,	4395 [R(int) = 0.0336,		
independent reflection	R(sigma) = 0.0327]	R(sigma) = 0.0404]		
Completeness to theta	99.7% (25.014 °)	99.8% (25.009 °)		
Max. and min. transmission	0.631 and 0.741	0.682 and 0.746		
Goodness-of-fit on F ²	1.077	1.058		
Final R indices[I>2 σ (I)]	$R_1 = 0.0434, wR_2 = 0.1191$	$R_1 = 0.0480, wR_2 = 0.1269$		
R indexes (all data)	$R_1 = 0.0576$, $wR_2 = 0.1334$	$R_1 = 0.0704, wR_2 = 0.1467$		
Largest diff. peak and hole/e·nm ⁻³	330 and -710	1010 and -400		
CCDC number	2166017	2166018		

 Table S1 Crystallographic Data and Structural Refinements for 1-2

Parameter	Value	Parameter	Value
Cu(1)-O(1)	0.1967(3)	Cu(1)-O(1W)	0.2295(3)
Cu(1)-O(4)#1	0.2013(2)	Cu(1)-N(1)#2	0.1991(3)
Cu(1)-N(4)	0.1985(3)	O(4)-Cu(1)#3	0.2013(2)
N(1)-Cu(1)#4	0.1991(3)		
O(1)-Cu(1)-O1W	98.55(12)	O(1)-Cu(1)-O(4)#1	159.42(11)
O(1)-Cu(1)-N(1)#2	90.61(13)	O(1)-Cu(1)-N(4)	89.08(13)
O(4)#1-Cu(1)-O1(W)	101.95(11)	N(1)#2-Cu(1)-O1(W)	94.94(12)
N(1)#12-Cu(1)-O(4)#1	89.42(12)	N(4)-Cu(1)-O(1W)	90.77(12)
N(4)-Cu(1)-O(4)#1	88.86(11)	N(4)-Cu(1)-N(1)#2	174.26(13)
Cu(1)-O(2)	0.1982(3)	Cu(1)-O(3)#1	0.2040(2)
Cu(1)-O(1)#2	0.2335(3)	Cu(1)-N(1)	0.2004(3)
Cu(1)-N(3)	0.1990(3)	O3-Cu(1)#3	0.2040(2)
O1–Cu(1)#2	0.2335(3)		
O(2)-Cu(1)-O(3)#1	162.64(11)	O(2)-Cu(1)-O(1)#2	109.56(11)
O(2)-Cu(1)-N(1)	88.43(12)	O(2)-Cu(1)-N(3)	89.28(12)
O(3)#1-Cu(1)-O(1)#2	87.68(10)	N(1)-Cu(1)-O(3)#1	89.67(12)
N(1)-Cu(1)-O(1)#2	89.71(12)	N(3)-Cu(1)-O(3)#1	91.44(12)
N(3)-Cu(1)-O(1)#2	94.44(12)	N(3)-Cu(1)-N(1)	175.74(13)

Table S2 Selected Bond lengths (nm) and Angles (°) for 1-2

1 Symmetry code: #1 = +x, 1+y, +z; #2 = 3/2-x, -1/2+y, 3/2-z; #3 = +x, -1+y, +z; #4 = 3/2-x, 1/2+y, 3/2-z. **2** Symmetry code: #1 = +x, -1+y, +z; #2 = 3/2-x, 1/2-y, 1-z; #3 = +x, 1+y, +z.

D-H···A	D-H	Н…А	[D…A]	∠D-H…A
C1-H1…O2W#1	0.0929(5)	0.2589(5)	0.3300(7)	133.7(3)
C3-H3···O2#2	0.0930(5)	0.2637(3)	0.3515(6)	157.6(3)
C11-H11A…O2W#2	0.0972(7)	0.2394(6)	0.3233(9)	144.3(4)
C11-H11B…O5#2	0.0930(5)	0.2634(3)	0.3487(6)	152.8(3)
C13-H13…O5#3	0.0970(6)	0.2548(3)	0.3295(6)	133.9(4)
C17-H17···O2W#4	0.0930(4)	0.2863(7)	0.3642(8)	142.1(3)
C18-H18…O2W	0.0931(4)	0.2447(7)	0.3254(8)	154.0(3)
O2W-H2WA…O5	0.1026(7)	0.1864(2)	0.2882(7)	170.8(4)
O2W-H2WB…O5#5	0.1002(5)	0.1956(3)	0.2843(6)	146.1(4)
O1W-H1WB…O2#6	0.847(3)	0.2055(4)	0.2832(4)	152.5(2)
O1W-H1WA…O2	0.844(3)	0.2390(3)	0.2952(4)	124.6(2)

Table S3 Hydrogen-bonding Geometry of 1 (nm and °)

Symmetry code: #1 = -1/2+x, 1/2-y, 1/2+z; #2 = -1+x, 1+y, +z; #3 = 1-x, -y, 1-z; #4 = 2-x, -y, 1-z;

#5 = 2-x, -1-y, 1-z; #6 = 3/2-x, 1/2+y, 3/2-z.

Table S4 Hydrogen-bonding Geometry of complex 2 (nm and $^\circ)$

D-H···A	D-H	Н…А	[D…A]	∠D-H…A
C14-H14A…O6#1	0.0960(5)	0.2392(5)	0.3188(7)	140.1(3)
C6-H6C…O6#2	0.0961(5)	0.2817(5)	0.3726(8)	157.8(4)
C4-H4…O5#3	0.0930(6)	0.2782(4)	0.3487(6)	133.3(3)
С12-Н12…О4	0.0932(7)	0.2483(5)	0.3191(9)	132.8(3)
С8-Н8…О1	0.0930(4)	0.2794(3)	0.3395(5)	123.3(3)

Symmetry code: #1 = 1-x, +y, 1/2-z; #2 = 1/2+x, 1/2-y, 1/2+z; #3 = 1-x, 1-y, 1-z.

Table S5 Comparison of the OER activities of copper complexes electrocatalysts

Catalyst	Overpotential	Electrolyte	Ref.
	(mV)		
[L-Cu ^{II} -DMF]	650	0.10 M Carbonate buffer(pH = 10)	1
CuxS-2	530	0.1 M KOH	2
CuxS-3	430	0.1 M KOH	2
$[Cu(N_2Py_3)](BF_4)_2$	831	0.10 M Phosphate buffer(pH = 11)	3
Cu ₂ L	630	0.1 M TBAP	4
Cu-CNTCPP	430	1 M KOH	5
1	500	1 M KOH	This work
2	360	1 M KOH	This work

Catalyst	Туре	Initial	light	Degrad	Time	Rate	Eg(e	Ref.
	of	concent	source	ation	(min)	constant	V)	
	dye	ration		efficien		(\min^{-1})		
		of dye		cy (%)				
CP1	MB	16	visible	93.7	30	0.05642	1.68	6
		mg/L	light					
CP1	RhB	23.95m	visible	95.8	30	0.07684	1.68	6
		g/L	light					
CuOF	MO	0.1M	UV	100	270	-	-	7
			light					
[Cu(NPT)	RhB	10	UV	95.72	160	-	-	8
2(NO2-B		mg/L	light					
DC)]n								
[Cu(NPT)	MB	10	UV	95.49	160	-	-	8
$_2(NO_2-B)$		mg/L	light					
DC) _{]n}								
[Cu(NPT)	MO	10	UV	31.93	160	-	-	8
2(NO2-B		mg/L	light					
DC) _{]n}								
[Cu(BMI	MO	10	UV	91	70	-	3.45	9
OPE)(Br-		mg/L	light					
BDC)]n								
[Cu(BMI	MB	10	UV	91	70	-	3.45	9
OPE)(Br-		mg/L	light					
$BDC)]_n$					_			
$Cu(pc)_2 \cdot 2$	RhB	20	UV	97	8	-	-	10
H ₂ O		mg/L	light	. –	0			
$Cu(pc)_2 \cdot 2$	MO	20	UV	97	8	-	-	10
H_2O		mg/L	light					
	DID	20		05	0.0			10
$Cu(pc)_2 \cdot 2$	RhB	20	visible	95	90	-	-	10
H_2O		mg/L	light					
$C_{\rm ex}(r,r) = 2$	MO	20		00	55			10
	MO	20 		90	33	-	-	10
H ₂ U		mg/L	ligni					
1	MO	40	visible	96.2	150	0.02133	2.17	This work
		mg/L	light					
2	MO	40	visible	90.8	150	0.01644	2.46	This work
		mg/L	light					

Table S6 Comparison of photocatalytic degradation of dyes by copper complexes

References

- [1] F. Chen, N. Wang, H. Lei, D. Guo, H. Liu, Z. Zhang, W. Zhang, W. lai, R. Cao, Inorganic Chemistry, 2017, 56, 13368-13375. https://doi.org/10.1021/acs.inorgchem.7b02125.
- [2] A. Singh, M. Trivedi, P. Singh, G. Kociok-Kohn, U. P. Azad, A. K. Singh, A. Kumar, New Journal of Chemistry, 2018, 42, 18759-18764. https://doi.org/10.1039/C8NJ03992E.

[3]Z. Xu, Z. Zheng, Q. Chen, J. Wang, K. Yu, X. Xia, J. Shen, Q. Zhang, Dalton Trans, 2021, 50, 10888-10895. https://doi.org/10.1039/D1DT01821C.

- [4] S. Majumder, A. Abdel Haleem, P. Nagaraju, Y. Naruta, Dalton Transactions, 2017, 46, 9131-9139. https://doi.org/10.1039/C7DT01594A.
- [5] Z. Huang, M. Zhang, H. Lin, S. Ding, B. Dong, D. Liu, H. Wang, F. Dai, D. Sun, RSC Advances, 2018, 8, 40054-40059. https://doi.org/10.1039/C8RA08338J.

[6] H. Jain, A. Joshi, C. N. Ramachandran, R. Kumar, ChemistrySelect., 2019, 4(17), 4952-4961. https://doi.org/10.1002/slct.201900498.

- [7] G. R. Reddy, S. Balasubramanian, RSC Advances, 2015, 5(66), 53979-53987. https://doi.org/10.1039/C5RA07469J.
- [8] L. Li, W. Ju, J. Tao, R. Xin, J. Wang, X. Xu, Journal of Molecular Structure, 1096, 142-146. Journal of Molecular Structure., 2015, 1096, 142-146. https://doi.org/10.1016/j.molstruc.2015.04.025.
- [9] L. Liang, C. Pan, J. Wang, Zeitschrift F
 ür Naturforschung B, 2020, 75(4), 347-352. https://doi.org/10.1515/znb-2019-0195.

[10] J. Ran, X. Li, Q. Zhao, Z. Qu, H. Li, Y. Shi, G. Chen, Inorganic Chemistry Communications, 2010, 13, 526-528. https://doi.org/10.1016/j.inoche.2010.01.028.