Support information for

Efficient dye degradation and THz spectra of {PMo₁₂} based

rare earth phosphine oxide complexes

Cong Hu^a, Ying-Yu Li^a, Qi-Ming Qiu^b, Hong-Liang Han^a, Chao-Yue Gu^a, Yu-Ping Yang^c Li-Xiong Dai^{*d} and Qiong-Hua Jin^{*a, e}

^a Department of Chemistry, Capital Normal University, Beijing, 100048, China

^b School of science, China University of Geosciences, Beijing, 100083, China

^c School of Science, Minzu University of China, Beijing, 100081, China

^d Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China

^e State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China

Caption of Figure

Fig S1. Powder X-ray diffraction of complex **1** Fig S2. Powder X-ray diffraction of complex **2** Fig S3. Powder X-ray diffraction of complex **3**

- Fig S4. Powder X-ray diffraction of complex **4** Fig S5. Powder X-ray diffraction of complex **5**
- Fig S6. Powder X-ray diffraction of complex **6**
- Fig S7. Powder X-ray diffraction of complex 7
- Fig S8. Powder X-ray diffraction of complex 8
- Fig S9. Powder X-ray diffraction of complex **9**
- Fig S10. Powder X-ray diffraction of complex 10
- Fig. S11. The IR spectra for H₃PMo₁₂O₄₀
- Fig. S12. The IR spectra for complex 1
- Fig. S13. The IR spectra for complex 2
- Fig. S14. The IR spectra for complex 3
- Fig. S15. The IR spectra for complex 4
- Fig. S16. The IR spectra for complex 5
- Fig. S17. The IR spectra for complex 6
- Fig. S18. The IR spectra for complex 7
- Fig. S19. The IR spectra for complex 8
- Fig. S20. The IR spectra for complex 9
- Fig. S21. The IR spectra for complex 10

Fig. S22. Adsorption efficiency of RhB at different time intervals by complex **1**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S23. Adsorption efficiency of RhB at different time intervals by complex **2**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S24. Adsorption efficiency of RhB at different time intervals by complex **4**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S25. Adsorption efficiency of RhB at different time intervals by complex 5. (inset: Typical absorption spectra of

RhB solution at different time intervals.)

Fig. S26. Adsorption efficiency of RhB at different time intervals by complex **6**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S27. Adsorption efficiency of RhB at different time intervals by complex **7**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S28. Adsorption efficiency of RhB at different time intervals by complex **8**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S29. Adsorption efficiency of RhB at different time intervals by complex **10**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S30. PXRD of complex 3 before and after adsorption experiments.

Fig. S31. Adsorption effect of MB by complexes **1-10** after stirring for 30 minutes in the dark.

Fig. S32. Removal efficiency of MB in the photocatalytic experiment by complex **2**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S33. Removal efficiency of MB in the photocatalytic experiment by complex **3**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S34. Removal efficiency of MB in the photocatalytic experiment by complex **4**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S35. Removal efficiency of MB in the photocatalytic experiment by complex **5**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S36. Removal efficiency of MB in the photocatalytic experiment by complex **6**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S37. Removal efficiency of MB in the photocatalytic experiment by complex **7**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S38. Removal efficiency of MB in the photocatalytic experiment by complex **9**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S39. Removal efficiency of MB in the photocatalytic experiment by complex **10**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S40. The photocatalytic degradation removal rates of MB by complex **1** for 5 cycles under the same conditions. Fig. S41. PXRD of complex **1** before and after five cycles of photocatalytic experiment.

Caption of Table

Table S1. Selected bond lengths(Å) and bond angles(°) for complexes 1-10.

Table S2. Weak interactions in the stacking structure of complex 1

Table S3. Weak interactions in the stacking structure of complex ${\bf 2}$

Table S4. Weak interactions in the stacking structure of complex 3

Table S5. Weak interactions in the stacking structure of complex 4

Table S6. Weak interactions in the stacking structure of complex **5**

Table S7. Weak interactions in the stacking structure of complex ${\bf 6}$

Table S8. Weak interactions in the stacking structure of complex 7

Table S9. Weak interactions in the stacking structure of complex 8

Table S10. Weak interactions in the stacking structure of complex 9

Table S11. Weak interactions in the stacking structure of complex 10

Fig S1. Powder X-ray diffraction of complex 1

Fig S2. Powder X-ray diffraction of complex 2

Fig S3. Powder X-ray diffraction of complex **3**

Fig S4. Powder X-ray diffraction of complex 4

Fig S5. Powder X-ray diffraction of complex 5

Fig S6. Powder X-ray diffraction of complex 6

Fig S7. Powder X-ray diffraction of complex 7

Fig S8. Powder X-ray diffraction of complex 8

Fig S9. Powder X-ray diffraction of complex **9**

Fig S10. Powder X-ray diffraction of complex 10

Fig. S12. The IR spectra for complex 1

Fig. S22. Adsorption efficiency of RhB at different time intervals by complex **1**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S23. Adsorption efficiency of RhB at different time intervals by complex **2**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S24. Adsorption efficiency of RhB at different time intervals by complex **4**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S25. Adsorption efficiency of RhB at different time intervals by complex **5**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S26. Adsorption efficiency of RhB at different time intervals by complex **6**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S27. Adsorption efficiency of RhB at different time intervals by complex **7**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S28. Adsorption efficiency of RhB at different time intervals by complex **8**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S29. Adsorption efficiency of RhB at different time intervals by complex **10**. (inset: Typical absorption spectra of RhB solution at different time intervals.)

Fig. S30. PXRD of complex 3 before and after adsorption experiments.

Fig. S31. Adsorption effect of MB by complexes **1-10** after stirring for 30 minutes in the dark.

Fig. S32. Removal efficiency of MB in the photocatalytic experiment by complex **2**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S33. Removal efficiency of MB in the photocatalytic experiment by complex **3**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S34. Removal efficiency of MB in the photocatalytic experiment by complex **4**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S35. Removal efficiency of MB in the photocatalytic experiment by complex **5**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S36. Removal efficiency of MB in the photocatalytic experiment by complex **6**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S37. Removal efficiency of MB in the photocatalytic experiment by complex **7**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S38. Removal efficiency of MB in the photocatalytic experiment by complex **9**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S39. Removal efficiency of MB in the photocatalytic experiment by complex **10**. (inset: UV–visible absorption spectral changes observed for the MB solution under UV light irradiation)

Fig. S40. The photocatalytic degradation removal rates of MB by complex 1 for 5 cycles under the same

Fig. S41. PXRD of complex ${\bf 1}$ before and after five cycles of photocatalytic experiment

Table S1. Selected bond lengths	and bond angles(°)	for complexes 1-10
---------------------------------	--------------------	--------------------

1					
La(1)-O(45)	2.460(13)	La(1)-O(46)	2.463(11)	La(1)-O(47)	2.470(10)
La(1)-O(48)	2.498(13)	La(1)-O(49)	2.436(11)	La(1)-O(50)	2.453(11)
La(1)-O(51)	2.427(12)	La(1)-O(52)	2.492(11)		
O(45)-La(1)-O(46)	77.2(4)	O(45)-La(1)-O(47)	72.4(5)	O(45)-La(1)-O(48)	140.7(4)
O(45)-La(1)-O(49)	113.3(4)	O(45)-La(1)-O(50)	144.9(4)	O(45)-La(1)-O(51)	75.4(4)
O(45)-La(1)-O(52)	77.7(5)	O(46)-La(1)-O(47)	77.5(4)	O(46)-La(1)-O(48)	74.7(4)
O(46)-La(1)-O(49)	144.0(4)	O(46)-La(1)-O(50)	114.3(4)	O(46)-La(1)-O(51)	142.5(4)
O(46)-La(1)-O(52)	73.5(4)	O(47)-La(1)-O(48)	75.2(4)	O(47)-La(1)-O(49)	73.8(4)
O(47)-La(1)-O(50)	141.0(4)	O(47)-La(1)-O(51)	117.0(4)	O(47)-La(1)-O(52)	142.0(4)

O(48)-La(1)-O(49)	77.3(4)	O(48)-La(1)-O(50)	73.0(4)	O(48)-La(1)-O(51)	140.7(4)
O(48)-La(1)-O(52)	118.8(4)	O(49)-La(1)-O(50)	77.7(4)	O(49)-La(1)-O(51)	71.7(4)
O(49)-La(1)-O(52)	141.2(4)	O(50)-La(1)-O(51)	77.2(4)	O(50)-La(1)-O(52)	74.7(4)
O(51)-La(1)-O(52)	76.0(4)				
2					
Ce(1)-O(45)	2.426(8)	Ce(1)-O(46)	2.443(8)	Ce(1)-O(47)	2.440(8)
Ce(1)-O(48)	2.471(8)	Ce(1)-O(49)	2.414(7)	Ce(1)-O(50)	2.433(8)
Ce(1)-O(51)	2.437(8)	Ce(1)-O(52)	2.453(8)		
O(45)-Ce(1)-O(46)	77.3(3)	O(45)-Ce(1)-O(47)	73.1(3)	O(45)-Ce(1)-O(48)	141.3(3)
O(45)-Ce(1)-O(49)	113.5(3)	O(45)-Ce(1)-O(50)	143.9(3)	O(45)-Ce(1)-O(51)	74.4(3)
O(45)-Ce(1)-O(52)	77.3(3)	O(46)-Ce(1)-O(47)	76.9(3)	O(46)-Ce(1)-O(48)	74.3(3)
O(46)-Ce(1)-O(49)	143.8(3)	O(46)-Ce(1)-O(50)	114.6(3)	O(46)-Ce(1)-O(51)	142.0(3)
O(46)-Ce(1)-O(52)	74.0(3)	O(47)-Ce(1)-O(48)	75.3(3)	O(47)-Ce(1)-O(49)	74.0(3)
O(47)-Ce(1)-O(50)	141.3(3)	O(47)-Ce(1)-O(51)	117.3(3)	O(47)-Ce(1)-O(52)	142.2(3)
O(48)-Ce(1)-O(49)	77.8(3)	O(48)-Ce(1)-O(50)	73.2(3)	O(48)-Ce(1)-O(51)	141.6(3)
O(48)-Ce(1)-O(52)	118.3(3)	O(49)-Ce(1)-O(50)	77.8(3)	O(49)-Ce(1)-O(51)	72.2(3)
O(49)-Ce(1)-O(52)	140.8(3)	O(50)-Ce(1)-O(51)	77.4(3)	O(50)-Ce(1)-O(52)	74.1(3)
O(51)-Ce(1)-O(52)	75.4(3)				
3					
Pr(1)-O(45)	2.417(14)	Pr(1)-O(46)	2.426(12)	Pr(1)-O(47)	2.392(12)
Pr(1)-O(48)	2.468(14)	Pr(1)-O(49)	2.399(12)	Pr(1)-O(50)	2.420(12)
Pr(1)-O(51)	2.411(13)	Pr(1)-O(52)	2.435(13)		
O(45)-Pr(1)-O(46)	78.3(5)	O(45)-Pr(1)-O(47)	72.6(5)	O(45)-Pr(1)-O(48)	142.2(5)
O(45)-Pr(1)-O(49)	113.4(5)	O(45)-Pr(1)-O(50)	142.7(5)	O(45)-Pr(1)-O(51)	74.7(5)
O(45)-Pr(1)-O(52)	77.6(5)	O(46)-Pr(1)-O(47)	78.0(5)	O(46)-Pr(1)-O(48)	74.1(4)
O(46)-Pr(1)-O(49)	144.0(5)	O(46)-Pr(1)-O(50)	113.8(5)	O(46)-Pr(1)-O(51)	143.7(5)
O(46)-Pr(1)-O(52)	72.8(5)	O(47)-Pr(1)-O(48)	76.7(4)	O(47)-Pr(1)-O(49)	74.0(4)
O(47)-Pr(1)-O(50)	142.7(5)	O(47)-Pr(1)-O(51)	115.5(5)	O(47)-Pr(1)-O(52)	141.8(5)
O(48)-Pr(1)-O(49)	77.8(5)	O(48)-Pr(1)-O(50)	73.4(4)	O(48)-Pr(1)-O(51)	140.1(4)
O(48)-Pr(1)-O(52)	117.0(5)	O(49)-Pr(1)-O(50)	78.3(4)	O(49)-Pr(1)-O(51)	70.5(5)
O(49)-Pr(1)-O(52)	141.5(5)	O(50)-Pr(1)-O(51)	76.8(5)	O(50)-Pr(1)-O(52)	73.3(5)
O(51)-Pr(1)-O(52)	78.0(5)				
4					
Sm(1)-O(23)	2.516(15)	Sm(1)-O(23')	2.516(15)	Sm(1)-O(24)	2.452(27)
Sm(1)-O(24')	2.452(27)	Sm(1)-O(25)	2.398(18)	Sm(1)-O(25')	2.398(18)

Sm(1)-O(26)	2.336(17)	Sm(1)-O(26')	2.336(17)		
O(23)-Sm(1)-O(23')	78.3(8)	O(23)-Sm(1)-O(24)	72.6(8)	O(23)-Sm(1)-O(24')	142.2(8)
O(23)-Sm(1)-O(25)	113.4(8)	O(23)-Sm(1)-O(25')	142.7(8)	O(23)-Sm(1)-O(26)	74.7(8)
O(23)-Sm(1)-O(26')	77.6(8)	O(23')-Sm(1)-O(24)	78.0(8)	O(23')-Sm(1)-O(24')	74.1(8)
O(23')-Sm(1)-O(25)	144.0(8)	O(23')-Sm(1)-O(25')	113.8(8)	O(23')-Sm(1)-O(26)	143.7(8)
O(23')-Sm(1)-O(26')	72.8(8)	O(24)-Sm(1)-O(24')	76.7(8	O(24)-Sm(1)-O(25)	74.0(4)
O(24)-Sm(1)-O(25')	142.7(8)	O(24)-Sm(1)-O(26)	115.5(8)	O(24)-Sm(1)-O(26')	141.8(8)
O(24')-Sm(1)-O(25)	77.8(8)	O(24')-Sm(1)-O(25')	73.4(8	O(24')-Sm(1)-O(26)	140.1(7)
O(24')-Sm(1)-O(26')	117.0(8)	O(25)-Sm(1)-O(25')	78.3(8)	O(25)-Sm(1)-O(26)	70.5(8)
O(25)-Sm(1)-O(26')	141.5(8)	O(25')-Sm(1)-O(26)	76.8(8)	O(25')-Sm(1)-O(26')	73.3(8)
O(26)-Sm(1)-O(26')	78.0(8)				
5					
Eu(1)-O(1)	2.374(9)	Eu(1)-O(4)	2.354(8)	Eu(1)-O(7)	2.353(8)
Eu(1)-O(10)	2.337(8)	Eu(1)-O(13)	2.368(9)	Eu(1)-O(16)	2.345(8)
Eu(1)-O(19)	2.364(9)	Eu(1)-O(22)	2.388(9)		
O(1)-Eu(1)-O(4)	77.1(3)	O(1)-Eu(1)-O(7)	73.6(3)	O(1)-Eu(1)-O(10)	142.1(3)
O(1)-Eu(1)-O(13)	73.3(3)	O(1)-Eu(1)-O(16)	77.9(4)	O(1)-Eu(1)-O(19)	141.7(4)
O(1)-Eu(1)-O(22)	116.5(3)	O(4)-Eu(1)-O(7)	78.0(4)	O(4)-Eu(1)-O(10)	72.3(3)
O(4)-Eu(1)-O(13)	142.7(3)	O(4)-Eu(1)-O(16)	73.4(3)	O(4)-Eu(1)-O(19)	116.4(3)
O(4)-Eu(1)-O(22)	141.6(3)	O(7)-Eu(1)-O(10)	78.6(3)	O(7)-Eu(1)-O(13)	113.9(3)
O(7)-Eu(1)-O(16)	143.3(4)	O(7)-Eu(1)-O(19)	142.0(3)	O(7)-Eu(1)-O(22)	72.8(3)
O(10)-Eu(1)-O(13)	143.0(4)	O(10)-Eu(1)-O(16)	113.0(4)	O(10)-Eu(1)-O(19)	73.7(3)
O(10)-Eu(1)-O(22)	78.0(3)	O(13)-Eu(1)-O(16)	78.5(3)	O(13)-Eu(1)-O(19)	77.0(3)
O(13)-Eu(1)-O(22)	73.5(3)	O(16)-Eu(1)-O(19)	73.0(3)	O(16)-Eu(1)-O(22)	142.2(3)
O(19)-Eu(1)-O(22)	76.4(3)				
6					
Gd(1)-O(45)	2.390(12)	Gd(1)-O(46)	2.371(11)	Gd(1)-O(47)	2.403(10)
Gd(1)-O(48)	2.441(12)	Gd(1)-O(49)	2.362(12)	Gd(1)-O(50)	2.396(11)
Gd(1)-O(51)	2.394(12)	Gd(1)-O(52)	2.410(11)		
O(45)-Gd(1)-O(46)	79.4(4)	O(45)-Gd(1)-O(47)	72.2(5)	O(45)-Gd(1)-O(48)	142.6(4)
O(45)-Gd(1)-O(49)	112.3(5)	O(45)-Gd(1)-O(50)	142.9(5)	O(45)-Gd(1)-O(51)	73.1(5)
O(45)-Gd(1)-O(52)	78.6(5)	O(46)-Gd(1)-O(47)	77.0(4)	O(46)-Gd(1)-O(48)	73.4(4)
O(46)-Gd(1)-O(49)	143.1(4)	O(46)-Gd(1)-O(50)	113.6(4)	O(46)-Gd(1)-O(51)	143.1(4)
O(46)-Gd(1)-O(52)	73.3(4)	O(47)-Gd(1)-O(48)	76.9(4)	O(47)-Gd(1)-O(49)	74.1(4)
O(47)-Gd(1)-O(50)	143.0(4)	O(47)-Gd(1)-O(51)	115.9(4)	O(47)-Gd(1)-O(52)	141.5(5)

O(48)-Gd(1)-O(49)	78.0(4)	O(48)-Gd(1)-O(50)	73.1(4)	O(48)-Gd(1)-O(51)	141.4(4)
O(48)-Gd(1)-O(52)	116.2(5)	O(49)-Gd(1)-O(50)	78.9(4)	O(49)-Gd(1)-O(51)	71.8(4)
O(49)-Gd(1)-O(52)	142.0(4)	O(50)-Gd(1)-O(51)	77.9(5)	O(50)-Gd(1)-O(52)	73.0(4)
O(51)-Gd(1)-O(52)	77.6(4)				
7					
Tb(1)-O(23)	2.351(17)	Tb(1)-O(23')	2.351(17)	Tb(1)-O(24)	2.308(17)
Tb(1)-O(24')	2.308(17)	Tb(1)-O(25)	2.309(15)	Tb(1)-O(25′)	2.309(15)
Tb(1)-O(26)	2.254(15)	Tb(1)-O(26')	2.254(15)		
O(23)-Tb(1)-O(23')	141.9(8)	O(23)-Tb(1)-O(24)	77.9(8)	O(23)-Tb(1)-O(24')	78.4(8)
O(23)-Tb(1)-O(25)	73.2(8)	O(23)-Tb(1)-O(25')	73.8(8)	O(23)-Tb(1)-O(26)	72.9(8)
O(23)-Tb(1)-O(26')	77.3(8)	O(23')-Tb(1)-O(24)	76.4(8)	O(23')-Tb(1)-O(24')	141.5(8)
O(23')-Tb(1)-O(25)	115.8(8)	O(23')-Tb(1)-O(25')	142.3(8)	O(23')-Tb(1)-O(26)	112.4(8)
O(23')-Tb(1)-O(26')	143.4(8)	O(24)-Tb(1)-O(24')	73.4(8)	O(24)-Tb(1)-O(25)	79.0(8)
O(24)-Tb(1)-O(25')	78.5(8)	O(24)-Tb(1)-O(26)	71.4(8)	O(24)-Tb(1)-O(26')	141.4(8)
O(24')-Tb(1)-O(25)	143.6(5)	O(24')-Tb(1)-O(25')	114.3(8)	O(24')-Tb(1)-O(26)	72.9(8)
O(24')-Tb(1)-O(26')	78.0(8)	O(25)-Tb(1)-O(25')	73.9(8)	O(25)-Tb(1)-O(26)	73.5(8)
O(25)-Tb(1)-O(26')	142.9(8)	O(25')-Tb(1)-O(26)	141.8(8)	O(25')-Tb(1)-O(26')	76.9(8)
O(26)-Tb(1)-O(26')	116.7(8)				
8					
Tm(1)-O(45)	2.239(10)	Tm(1)-O(48)	2.238(10)	Tm(1)-O(51)	2.237(11)
Tm(1)-O(54)	2.238(10)	Tm(1)-O(57)	2.230(11)	Tm(1)-O(60)	2.216(11)
Tm(1)-O(63)	2.361(11)				
O(45)-Tm(1)-O(48)	76.4(4)	O(45)-Tm(1)-O(51)	81.1(4)	O(45)-Tm(1)-O(54)	126.54(4)
O(45)-Tm(1)-O(57)	146.4(4)	O(45)-Tm(1)-O(60)	101.5(5)	O(45)-Tm(1)-O(63)	71.0(4)
O(48)-Tm(1)-O(51)	124.9(4)	O(48)-Tm(1)-O(54)	76.9(4)	O(48)-Tm(1)-O(57)	134.6(4)
O(48)-Tm(1)-O(60)	76.9(4)	O(48)-Tm(1)-O(63)	134.8(4)	O(51)-Tm(1)-O(54)	77.5(4)
O(51)-Tm(1)-O(57)	86.9(4)	O(51)-Tm(1)-O(60)	157.5(4)	O(51)-Tm(1)-O(63)	80.2(4)
O(54)-Tm(1)-O(57)	80.5(4)	O(54)-Tm(1)-O(60)	116.3(5)	O(54)-Tm(1)-O(63)	148.3(4)
O(57)-Tm(1)-O(60)	78.7(4)	O(57)-Tm(1)-O(63)	76.0(4)	O(60)-Tm(1)-O(63)	79.7(5)
9					
Yb(1)-O(45)	2.219(10)	Yb(1)-O(48)	2.208(11)	Yb(1)-O(51)	2.208(11)
Yb(1)-O(54)	2.216(10)	Yb(1)-O(57)	2.224(12)	Yb(1)-O(60)	2.198(11)
Yb(1)-O(63)	2.349(12)				
O(45)-Yb(1)-O(48)	75.9(4)	O(45)-Yb(1)-O(51)	80.8(4)	O(45)-Yb(1)-O(54)	126.4(4)
O(45)-Yb(1)-O(57)	146.4(4)	O(45)-Yb(1)-O(60)	102.1(5)	O(45)-Yb(1)-O(63)	71.1(4)

O(48)-Yb(1)-O(51)	124.4(4)	O(48)-Yb(1)-O(54)	77.0(4)	O(48)-Yb(1)-O(57)	135.2(4)
O(48)-Yb(1)-O(60)	77.3(4)	O(48)-Yb(1)-O(63)	134.2(4)	O(51)-Yb(1)-O(54)	77.7(4)
O(51)-Yb(1)-O(57)	87.0(4)	O(51)-Yb(1)-O(60)	157.7(4)	O(51)-Yb(1)-O(63)	80.6(4)
O(54)-Yb(1)-O(57)	80.5(4)	O(54)-Yb(1)-O(60)	115.8(5)	O(54)-Yb(1)-O(63)	148.7(4)
O(57)-Yb(1)-O(60)	78.4(5)	O(57)-Yb(1)-O(63)	76.1(4)	O(60)-Yb(1)-O(63)	79.5(5)
10					
Y(1)-O(1)	2.219(10)	Y(1)-O(4)	2.208(11)	Y(1)-O(7)	2.208(11)
Y(1)-O(10)	2.216(10)	Y(1)-O(13)	2.224(12)	Y(1)-O(16)	2.198(11)
Y(1)-O(19)	2.349(12)				
O(1)-Y(1)-O(4)	75.8(4)	O(1)-Y(1)-O(7)	125.0(4)	O(1)-Y(1)-O(10)	76.8(4)
O(1)-Y(1)-O(13)	135.0(4)	O(1)-Y(1)-O(16)	77.5(4)	O(1)-Y(1)-O(19)	134.6(4)
O(4)-Y(1)-O(7)	80.9(4)	O(4)-Y(1)-O(10)	125.5(4)	O(4)-Y(1)-O(13)	146.9(4)
O(4)-Y(1)-O(16)	102.5(4)	O(4)-Y(1)-O(19)	71.0(4)	O(7)-Y(1)-O(10)	77.8(4)
O(7)-Y(1)-O(13)	86.5(4)	O(7)-Y(1)-O(16)	156.9(4)	O(7)-Y(1)-O(19)	79.2(4)
O(10)-Y(1)-O(13)	80.7(4)	O(10)-Y(1)-O(16)	116.2(4)	O(10)-Y(1)-O(19)	148.5(4)
O(13)-Y(1)-O(16)	78.3(4)	O(13)-Y(1)-O(19)	76.6(4)	O(16)-Y(1)-O(19)	80.3(4)

Table S2. Weak interactions in the stacking structure of complex 1

Intermolecular hydrogen bonds in the stacking structure of co	complex 1
---	-----------

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(2)-H(2A) O(15)	0.97	2.43	3.30(2)
C(3)-H(3B) O(14)	0.97	2.57	3.38(3)
C(11)-H(11A) O(13)	0.97	2.39	3.21(2)
C(17)-H(17A) O(5)	0.97	2.48	3.41(3)
C(18)-H(18B) O(21)	0.96	2.35	3.27(2)
C(22)-H(22A) O(37)	0.97	2.54	3.43(3)
C(23)-H(23B) O(30)	0.97	2.46	3.31(3)
C(23)-H(23B) O(44)	0.97	2.56	3.32(3)
C(31)-H(31A) O(39)	0.97	2.58	3.47(3)
C(32)-H(32A) O(44)	0.97	2.27	3.23(3)
C(35)-H(35A) O(29)	0.97	2.57	3.26(3)
C(36)-H(36B) O(34)	0.96	2.58	3.45(3)
C(42)-H(42A) O(22)	0.96	2.57	3.49(3)

Intramolecular hydrogen bonding in the stacking structure of complex ${\bf 1}$

Donor-H-Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(3)-H(3A) O(54)	0.97	2.49	2.90(3)
C(13)-H(13A) O(58)	0.97	2.58	3.00(2)
C(15)-H(15B) O(47)	0.97	2.44	2.78(3)
C(25)-H(25A) O(49)	0.97	2.36	2.88(3)
C(33)-H(33A) O(66)	0.97	2.54	2.97(3)
С(37)-Н(37А) О(52)	0.96	2.39	2.84(3)

Table S3. Weak interactions in the stacking structure of complex **2**

internolecular hydrogen bolius in the stacking structure of complex 2					
Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)		
C(2)-H(2A) O(15)	0.97	2.44	3.30(2)		
C(3)-H(3B) O(14)	0.97	2.47	3.30(3)		
C(11)-H(11A) O(13)	0.97	2.40	3.23(2)		
C(17)-H(17A) O(5)	0.97	2.43	3.35(3)		
C(22)-H(22A) O(37)	0.97	2.49	3.39(2)		
C(23)-H(23B) O(30)	0.97	2.53	3.37(3)		
C(23)-H(23B) O(44)	0.97	2.48	3.26(3)		
C(29)-H(29B) O(33)	0.97	2.60	3.54(3)		
C(32)-H(32A) O(44)	0.97	2.50	3.25(3)		
C(36)-H(36B) O(34)	0.96	2.56	3.41(3)		
C(42)-H(42A) O(22)	0.96	2.58	3.41(3)		

Intermolecular hydrogen bonds in the stacking structure of complex 2

Intramolecular hydrogen bonding in the stacking structure of complex ${\bf 2}$

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(2)-H(2B) O(54)	0.97	2.59	3.10(3)
C(13)-H(13A) O(58)	0.97	2.52	2.92(2)
C(15)-H(15B) O(47)	0.97	2.48	2.82(3)
C(17)-H(17B) O(48)	0.97	2.58	2.96(2)
C(25)-H(25A) O(49)	0.97	2.41	2.89(3)
C(33)-H(33A) O(66)	0.97	2.50	2.94(3)

Table S4. Weak interactions in the stacking structure of complex **3**

Intermolecular hydrogen bonds in the stacking structure of complex 3

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)

C(2)-H(2A) O(15)	0.97	2.48	3.29(3)
C(3)-H(3B) O(14)	0.98	2.52	3.32(3)
C(11)-H(11A) O(13)	0.97	2.43	3.25(3)
C(17)-H(17A) O(5)	0.97	2.43	3.35(3)
C(18)-H(18A) O(22)	0.96	2.54	3.49(3)
C(18)-H(18B) O(21)	0.96	2.35	3.28(3)
C(22)-H(22A) O(37)	0.97	2.47	3.37(3)
C(23)-H(23B) O(30)	0.97	2.48	3.30(3)
C(23)-H(23B) O(44)	0.97	2.53	3.28(3)
C(29)-H(29B) O(33)	0.97	2.55	3.51(3)
C(31)-H(31A) O(39)	0.97	2.54	3.44(3)
C(32)-H(32A) O(44)	0.97	2.24	3.20(3)
C(35)-H(35A) O(29)	0.97	2.58	3.28(3)
C(36)-H(36B) O(34)	0.97	2.56	3.40(3)
C(36)-H(36B) O(36)	0.97	2.55	3.34(3)

Intramolecular hydrogen bonding in the stacking structure of complex 3

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(1)-H(1B) O(68)	0.97	2.57	3.45(3)
C(2)-H(2B) O(54)	0.97	2.54	3.11(3)
C(13)-H(13A) O(58)	0.97	2.53	2.96(3)
C(15)-H(15B) O(47)	0.97	2.54	2.88(3)
C(25)-H(25A) O(49)	0.97	2.38	2.87(3)
C(33)-H(33A) O(66)	0.97	2.50	2.91(3)
C(37)-H(37A) O(52)	0.97	2.44	2.89(3)

Table S5. Weak interactions in the stacking structure of complex 4

Intermolecular hydrogen bonds in the stacking structure of complex 4				
Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)	
C(4)-H(4A) O(6)	0.96	2.44	3.01(7)	
C(7)-H(7A) O(19)	0.97	2.55	3.27(5)	
C(20)-H(20C) O(18)	0.96	2.57	3.42(9)	
Intramolecular hydrogen bonding in the stacking structure of complex 4				
Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)	
C(5)-H(5A) O(33)	0.97	2.32	3.20(6)	

2.34

Intermolecular hydrogen bonds in the stacking structure of complex 5			
Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(3)-H(3A) O(43)	0.97	2.53	3.47(2)
C(10)-H(10C) O(34)	0.97	2.48	3.31(3)
C(15)-H(15A) O(33)	0.97	2.57	3.52(2)
C(17)-H(17A) O(40)	0.97	2.46	3.30(2)
C(17)-H(17A) O(43)	0.97	2.59	3.30(3)
C(21)-H(21B) O(51)	0.97	2.47	3.30(2)
C(27)-H(27A) O(68)	0.97	2.51	3.37(3)
C(31)-H(31B) O(66)	0.97	2.39	3.22(2)
C(34)-H(34B) O(59)	0.96	2.60	3.33(2)
C(37)-H(37B) O(60)	0.97	2.49	3.38(2)
C(38)-H(38A) O(67)	0.96	2.56	3.52(3)
C(38)-H(38C) O(53)	0.96	2.39	3.29(2)
C(40)-H(40C) O(37)	0.96	2.50	3.37(2)

Table S6. Weak interactions in the stacking structure of complex **5**

Intramolecular hydrogen bonding in the stacking structure of complex 5

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(5)-H(5B) O(1)	0.97	2.52	2.99(4)
C(7)-H(7B) O(6)	0.97	2.54	2.99(3)
C(19)-H(19B) O(10)	0.97	2.49	2.96(3)
C(33)-H(33B) O(21)	0.97	2.57	2.97(2)

Table S7. Weak interactions in the stacking structure of complex ${\bf 6}$

Intermolecular hydrogen bonds in the stacking structure of complex 6				
Donor-H-Acceptor	D-H (Å)	H-A (Å)	D-A (Å)	
C(2)-H(2A) O(15)	0.97	2.59	3.40(2)	
C(3)-H(3B) O(14)	0.97	2.59	3.44(3)	
C(11)-H(11A) O(13)	0.97	2.40	3.24(2)	
C(17)-H(17A) O(5)	0.97	2.53	3.42(3)	
C(18)-H(18B) O(21)	0.96	2.43	3.35(3)	
C(22)-H(22A) O(37)	0.97	2.55	3.44(3)	

C(23)-H(23B) O(30)	0.96	2.53	3.28(3)
C(31)-H(31A) O(39)	0.97	2.58	3.49(3)
C(32)-H(32A) O(44)	0.97	2.27	3.23(3)
C(36)-H(36B) O(34)	0.96	2.26	2.76(3)
C(42)-H(42A) O(22)	0.96	2.56	3.47(3)

Intramolecular hydrogen bonding in the stacking structure of complex **6**

Donor-H-Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(3)-H(3A) O(54)	0.97	2.54	3.00(3)
C(19)-H(19B) O(59)	0.97	2.55	2.88(3)
C(25)-H(25A) O(49)	0.97	2.52	3.01(3)
C(37)-H(37A) O(52)	0.97	2.26	2.76(3)

Table S8. Weak interactions in the stacking structure of complex 7

Donor-H-Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(2)-H(2A) O(5)	0.97	2.58	3.38(4)
C(4)-H(4A) O(6)	0.96	2.21	2.87(7)
C(7)-H(7A) O(19)	0.97	2.46	3.28(5)
C(9)-H(9A) O(13)	0.97	2.20	2.99(6)
C(9)-H(9B) O(11)	0.97	2.19	2.90(6)
C(20)-H(20B) O(18)	0.95	2.13	2.79(10)

Intermolecular hydrogen bonds in the stacking structure of complex 7

Intramolecular hydrogen bonding in the stacking structure of complex 7

Donor-H-Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(1)-H(1B) O(30)	0.97	2.60	3.13(5)
C(5)-H(5A) O(33)	0.96	2.53	3.34(6)
C(5)-H(5B) O(27)	0.97	2.42	2.81(6)
C(14)-H(14B) O(32)	0.96	2.56	3.25(6)

Table S9. Weak interactions in the stacking structure of complex 8

In the same of a station of the second	ممانيا محجم مطلح من مامم مط		
intermolecular nydrogen	bonds in the stacking	structure of	r complex 8

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)	
O(63)-H(63C) N(1)	0.83	2.00	2.81(2)	
O(63)-H(63D) O(19)	0.85	2.08	2.91(2)	

C(1)-H(1A) O(38)	0.97	2.53	3.31(2)
C(1)-H(1B) O(14)	0.97	2.46	3.39(2)
C(2)-H(2B) O(35)	0.97	2.53	3.37(2)
C(12)-H(12B) O(31)	0.97	2.58	3.48(2)
C(14)-H(14B) O(10)	0.96	2.51	3.46(3)
C(19)-H(19B) O(31)	0.97	2.51	3.21(2)
C(20)-H(20A) O(32)	0.96	2.59	3.42(3)
C(25)-H(25A) O(34)	0.97	2.50	3.46(3)
C(26)-H(26B) O(38)	0.97	2.44	3.44(3)
C(26)-H(26C) O(16)	0.96	2.56	3.26(3)
C(29)-H(29B) O(16)	0.97	2.45	3.41(3)
C(32)-H(32A) O(12)	0.96	2.49	3.43(2)

Intramolecular hydrogen bonding in the stacking structure of complex 8

Donor-H-Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
C(7)-H(7B) O(56)	0.97	2.52	3.23(2)
C(17)-H(17A) O(58)	0.97	2.53	3.45(3)
C(23)-H(23A) O(59)	0.97	2.51	2.85(3)
C(25)-H(25B) O(57)	0.97	2.55	2.95(2)

Table S10. Weak interactions in the stacking structure of complex **9**

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
O(63)-H(63C) N(1)	0.83	2.00	2.81(3)
O(63)-H(63D) O(19)	0.86	2.06	2.89(2)
C(1)-H(1A) O(38)	0.97	2.52	3.31(2)
C(1)-H(1B) O(14)	0.97	2.42	3.35(2)
C(2)-H(2B) O(35)	0.97	2.54	3.37(2)
C(12)-H(12B) O(31)	0.97	2.60	3.49(2)
C(14)-H(14B)O(10)	0.96	2.52	3.46(3)
C(19)-H(19B)O(31)	0.97	2.49	3.21(2)
C(25)-H(25A) O(34)	0.97	2.51	3.46(3)
C(26)-H(26B) O(38)	0.95	2.45	3.35(3)
C(26)-H(26C)-O(16)	0.96	2.49	3.22(3)
С(29)-Н(29В) О(16)	0.97	2.43	3.39(3)

C(32)-H(32A) O(12)	0.96	2.50	3.43(3)	
Intramolecular hydrogen bonding in the stacking structure of complex 9				
Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)	
С(7)-Н(7В) О(56)	0.97	2.50	3.21(2)	
C(17)-H(17A) O(58)	0.97	2.54	3.46(3)	
C(23)-H(23A) O(59)	0.97	2.54	2.90(2)	
C(25)-H(25B) O(57)	0.97	2.58	2.95(2)	
C(27)-H(27A) O(60)	0.97	2.59	3.02(3)	

Table S11. Weak interactions in the stacking structure of complex ${\bf 10}$

Donor-H Acceptor	D-H (Å)	H-A (Å)	D-A (Å)
O(19)-H(19E) N(1)	0.85	1.98	2.81(2)
O(19)-H(19F) O(28)	0.85	2.04	2.87(2)
C(1)-H(1B) O(58)	0.97	2.54	3.39(2)
C(2)-H(2A) O(63)	0.97	2.59	3.36(2)
C(2)-H(2B) O(36)	0.97	2.42	3.35(2)
C(10)-H(10B) O(41)	0.96	2.58	3.46(3)
C(14)-H(14B) O(30)	0.96	2.58	3.45(3)
C(19)-H(19B) O(53)	0.97	2.47	3.22(2)
C(23)-H(23A) O(57)	0.97	2.58	2.99(2)
C(24)-H(24B) O(63)	0.96	2.41	3.36(3)
C(25)-H(25B) O(41)	0.97	2.56	3.26(2)
C(27)-H(27B) O(33)	0.97	2.51	3.44(3)
C(32)-H(32B) O(33)	0.96	2.52	3.39(3)

Intermolecular hydrogen bonds in the stacking structure of complex **10**

Intramolecular hydrogen bonding in the stacking structure of complex ${\bf 10}$

	□_ н (Å)	H_Λ (Å)	 D۸ (Å)
	D-11 (A)		D-A (A)
C(3)-H(3B) O(12)	0.97	2.52	3.23(2)
C(23)-H(23B) O(13)	0.97	2.58	2.99(2)
C(25)-H(25A) O(14)	0.97	2.54	2.88(2)