Construction and Structural Transformation of Two Coordination Sphere Supramolecular Isomers Based on Co(II) and 4-(2-Pyridyl)-NH-1,2,3-Triazole *via* One-Pot Synthesis

Supporting information

Supramolecular interactions

Figure S1 Hydrogen bonding of Co-Cl and Co-H₂O.

D	Н	A	H…A(Å)	D…A(Å)	D-H····A(°)	Symmetry Operation
Co-Cl						
01	H1A	Cl1	2.569(32)	3.243(3)	167(3)	x,y,z
01	H1B	Cl1	2.372(44)	3.138(3)	168(4)	x,2-y,-z
N4	H4	01	1.900(31)	2.698(3)	174(3)	1/2+x,3/2-y,- 1/2+z
Co-H ₂ O						
01	H1A	Cl1	2.413(28)	3.147(19)	175(3)	-1/2+x,3/2- y,1/2+z
01	H1B	Cl1	2.480(31)	3.243(2)	169(3)	1-x,1-y,-z
N4	H4	Cl1	2.238(28)	3.085(2)	167(2)	x,y,z

Table S1 Hydrogen bond geometries of Co-Cl and Co-H₂O.

Time dependent photography

Figure S2 Time dependent photography for solvothermal reaction at 80°C.

Figure S3 Experimental and simulated PXRD patterns for Co-Cl and Co-H₂O.

Figure S4 Time dependent powder X-ray pattern for reaction at 80°C.

0.5 h

1 h

2 h

4 h

Figure S5 Time dependent photography for solvothermal reaction at 60°C.

ESI-MS

Table S2 Peak assignments of the ESI-MS spectrum (positive mode) of single crystalof Co-Cl.

$HL=C_7H_6N_4$				
Intensity	m/z	m/z(cal)	fragments	
0.52045	147.07	147.07	[HL+H] ⁺	
1	175.52	175.53	[Co(HL) ₂] ²⁺	
0.33225	196.04	196.04	[Co(CH ₃ CN)(CH ₃ OH) ₃] ²⁺	
0.00266	204.99	204.99	$[CoL+H]^+$	
0.28689	248.55	248.55	$[Co(HL)_{3}]^{2+}$	
0.0255	280.99	280.99	[Co(HL)(CH ₃ CN)Cl] ²⁺	
0.01195	286.04	286.04	[Co (HL) (CH ₃ CN) ₂] ²⁺	
0.55118	350.04	350.04	$[Co(HL)(L)]^+$	
0.12681	386.02	386.02	[Co(HL) ₂ Cl] ⁺	
0.00598	422.57	422.57	$[Co_2L_3(HL)_2]^{2+}$	
6.27E-4	428.06	428.06	$[Co(HL)_2Cl(CH_3CN)H]^+$	
0.01355	451.53	451.53	$[Co_3(L)_5H]^{2+}$	
0.00107	483.96	483.96	$[Co_2(L)_2Cl(CH_3CN)]^+$	
0.13417	495.09	495.09	$[Co_2(L)_2(HL)]^+$	
0.01013	553.02	553.02	$[Co_2(L)_3]^{2+}$	
0.00148	588.99	589.00	$[Co_2(L)_3ClH]^+$	
0.00321	597.08	597.07	$[Co^{III}_{2}Co^{II}(HL)(L)_{6}]^{2+}$	
0.006	699.08	699.08	$[Co_2(L)_3(HL)]^+$	
0.00288	734.05	734.05	$[Co_2(L)_3(HL)Cl]^+$	

Figure S6 Representation of the calculated peaks fit experimental species present in the ESI-MS spectrum (positive mode) of Co-Cl.

Figure S7 Negative mode ESI-MS of Co-Cl.

Table S3 Peak assignments of the	ESI-MS spectrum	(negative mode)	of single crystal
of Co-Cl .			

$HL=C_7H_6N_4$				
Intensity	m/z	m/z(cal)	Fragments	
0.05606	145.07	145.07	L-	
1	163.84	163.84	[CoCl ₃] ⁻	
0.10663	273.92	273.92	[CoLCl ₂] ⁻	
0.03317	294.71	294.71	$[Co_2Cl_5]^-$	
0.01137	384.01	384.00	$[CoL_2Cl]^-$	
0.02137	404.79	404.79	$[Co_2LCl_4]^-$	
9.98099E-4	423.58	423.58	$[Co_3Cl_7]^-$	
0.0032523	512.87	512.87	$[Co_2L_2Cl_3]^-$	
0.00315	533.66	533.66	$[Co_3LCl_6]^-$	
1.37197E-4	622.96	622.96	$[Co_2L_3Cl_2]^-$	
1.169E-5	662.53	662.53	$[Co_4LCl_8]^-$	
0.00540126	643.74	643.74	$[Co_{3}L_{2}Cl_{5}]^{-}$	
6.26836E-4	753.83	753.83	$[Co_3L_3Cl_4]^-$	
4.12906E-4	772.61	772.61	$[Co_4L_2Cl_7]^-$	
0.00130819	882.70	882.70	$[Co_4L_3Cl_6]^-$	
3.601568E-5	992.78	992.78	$[Co_4L_4Cl_5]^-$	

Figure S8 Representation of the calculated peaks fit experimental species present in the ESI-MS spectrum (negative mode) of Co-Cl.

Theoretical calculations

Table S4 MS calculated results of Co-Cl and Co-H₂O crystal.

	Energy type	Total energy
Co-Cl	Crystal	-6865.4339487
	Optimized	-6867.3638070
Co-H ₂ O	Crystal	-6866.6352352

	Reactant	Product 1	Product 2
	2 L G= -489.347446		
	CoCl2w4_1	Co-Cl	Со-H ₂ O -1277.214180
	CoCl2w4_2	-2045.200333	
	-13/2.238301	4 water -76.438846	2 water -76.438846
			2 C1--460.428958
Summary of G (CoCl2w4_2 as reactant)	-2350.933253	-2350.955717	-2350.949788

Table S5 Designed species involved in the possible reaction route for forming Co-Cland Co-H2O from $CoCl_2 \cdot 6H_2O$ and ligand.

Table S6 Bond order analysis in the optimized complexes of Co-Cl and Co-H₂O.

	Co-Cl	Со-Н2О	
Co-Cl/O(w)	0.73742886	0.19343212	
Co-N1	0.26582501	0.32380175	
Co-N2	0.23380482	0.30608899	

	Co-Cl	Energy a(b)	Interaction Types and Scheme
			C1···Cl (4.599)
1	dimer11_14	2.54(3.18)	•
			0
			•
			O-H…Cl (3.138)
			•
2	dimer11_14	-9.51(-6.91)	3542 - 32 - 32 - 32 - 32 - 32 - 32 - 32 -
			0 6
			O-H…Cl (3.243)
			° 0 °
3	dimer11_14	-7.59(-5.04)	JE
			О-Н…Ру (3.627)
4	dimer11_14	-1.56(-0.52)	د ه دونودوروهورو
			•
			C1C1 (7.156)
5	dimer31_14	-1.31(-0.44)	• • •
			³³⁹ 09 ² 939033
			$CI\cdots CI(8.861)$
			30-3 38-10-1
ſ	1. 22.14		
6	dimer32_14	-5.56(-4.97)	~~~ 30 30
			and the second second
			source of the second se
_			
7	dimer34_14	-1.31(-0.44)	Cl····Cl (7.156)

Table S7 Calculated complexation energies (kcal/mol) between $[Co(HL)_2Cl_2] \cdot 2H_2O$ monomer and all of its possible neighbors in Co-Cl crystals.

^a Energy without Basis Set Superposition Error (BSSE) correction; ^b Energy after BSSE correction.

Table S8 Calcu	ulated complexation energies (k	ccal/mol) between [CoL ₂ (H ₂ O) ₂]·Cl ₂
monomer and a	all possible neighbors in Co-H ₂	O crystals.

	Co-H ₂ O	Energy a(b)	Interaction Types and Scheme
1	dimer11_14	128.38(128.98)	O…O (8.982)
2	dimer17_14	128.38(128.98)	O…O (8.982)
3	dimer20_14	90.14(90.15)	O····O (11.631)
4	dimer26_14	112.99(113.04)	O····O (12.951)
5	dimer29_14	83.81(79.84)	O····O (15.317)
6	dimer37_14	136.43(134.14)	O…O (5.765)

^a Energy without Basis Set Superposition Error (BSSE) correction; ^b Energy after BSSE correction.

Crystallographic Data Tables

Compound	$Co[(HL)_2Cl_2] \cdot 2H_2O$	$Co[(HL)_2(H_2O)_2]Cl_2$		
CCDC	2177958	2177960		
Empirical formula	$C_{14}H_{16}Cl_2CoN_8O_2$	$C_{14}H_{16}Cl_2CoN_8O_2$		
Formula weight	458.18	458.18		
Temperature	293 K	293 K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Monoclinic	Monoclinic		
Space group	$P2_{1}/n$	$P2_{1}/n$		
Unit cell dimensions	$a=8.0159(5)$ $\alpha=90^{\circ}$	$a=7.0384(8)$ $\alpha=90^{\circ}$		
	$b=7.6491(6)$ $\beta=94.218(6)^{\circ}$	$b=10.3897(8)$ $\beta=95.857(10)$		
	<i>c</i> =15.2205(11) <i>γ</i> =90°	<i>c</i> =12.6776(11) γ=90°		
Volume	930.71(11) Å ³	922.25(15) Å ³		
Z	2	2		
Density (calculated)	1.628 g cm ⁻³	1.650 g cm ⁻³		
Absorption	1.237 mm ⁻¹	1.249 mm^{-1}		
coefficient				
F(000)	462.0	466.0		
Theta range for data collection	3.6680 to 30.5240°	3.4570 to 32.8110°		
Index ranges	-9<=h<=9	-5<=h<=8		
	-9<=k<=5	-12<=k<=12		
	-18<=1<=18	-15<=1<=15		
Reflections collected	3395	3522		
Independent	1548 ([R(int) = 0.0227])	1596 ([R(int) = 0.0205])		
reflections				
Completeness	99.9% (theta = 30.5240°)	99.2% (theta = 25.970°)		
Goodness-of-fit	1.050	1.064		
Final R indices	R1 = 0.0346, wR2 = 0.0925	R1 = 0.0260, wR2 = 0.0632		
[I>2sigma(I)]				
R indices (all data)	R1 = 0.0429, $wR2 = 0.1040$	R1 = 0.0326, $wR2 = 0.0694$		

Table S9 Crysallography data and refinement parameters for Co-Cl and Co-H₂O.

BondLength/AngleBondLength/AngleCo1—Cl12.4744 (7)Co1—N12.1386 (19)Co1—Cl1i2.4743 (7)Co1—N2i2.1281 (19)Co1—N1i2.1385 (19)Co1—N22.1281 (19)Cl1i—Co1—Cl1180.0N2i—Co1—N1102.56 (7)N1i—Co1—Cl187.60 (6)N2i—Co1—N1i77.44 (7)N1i—Co1—Cl192.40 (6)N2—Co1—N177.43 (7)N1—Co1—Cl187.60 (6)N2—Co1—N1i102.57 (7)N1—Co1—Cl192.40 (6)N2—Co1—N2i180.0N1i—Co1—Cl1i90.64 (6)C1—N1—Co1126.08 (17)N2—Co1—Cl190.64 (6)N2i—Co1—Cl1i89.36 (6)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bond	Length/Angle	Bond	Length/Angle
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Col—Cll	2.4744 (7)	Col—N1	2.1386 (19)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Col—Cll ⁱ	2.4743 (7)	Co1—N2 ⁱ	2.1281 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Col—Nl ⁱ	2.1385 (19)	Co1—N2	2.1281 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cll ⁱ —Col—Cll	180.0	N2 ⁱ —Co1—N1	102.56 (7)
N1 ⁱ —Co1—Cl192.40 (6)N2—Co1—N177.43 (7)N1—Co1—Cl187.60 (6)N2—Co1—N1 ⁱ 102.57 (7)N1—Co1—Cl1 ⁱ 92.40 (6)N2—Co1—N2 ⁱ 180.0N1 ⁱ —Co1—N1180.0C5—N1—Co1116.09 (15)N2 ⁱ —Co1—Cl190.64 (6)C1—N1—Co1126.08 (17)N2—Co1—Cl1 ⁱ 90.64 (6)N2 ⁱ —Co1—Cl1 ⁱ 89.36 (6)	N1 ⁱ —Co1—Cl1 ⁱ	87.60 (6)	N2 ⁱ —Co1—N1 ⁱ	77.44 (7)
N1—Co1—Cl1 $87.60 (6)$ N2—Co1—N1 ⁱ $102.57 (7)$ N1—Co1—Cl1 ⁱ $92.40 (6)$ N2—Co1—N2 ⁱ 180.0 N1 ⁱ —Co1—N1 180.0 C5—N1—Co1 $116.09 (15)$ N2 ⁱ —Co1—Cl1 $90.64 (6)$ C1—N1—Co1 $126.08 (17)$ N2—Co1—Cl1 ⁱ $90.64 (6)$ N2 ⁱ —Co1—Cl1 ⁱ $89.36 (6)$	N1 ⁱ —Co1—Cl1	92.40 (6)	N2—Co1—N1	77.43 (7)
N1—Co1—Cl1 ⁱ 92.40 (6)N2—Co1—N2 ⁱ 180.0N1 ⁱ —Co1—N1180.0C5—N1—Co1116.09 (15)N2 ⁱ —Co1—Cl190.64 (6)C1—N1—Co1126.08 (17)N2—Co1—Cl1 ⁱ 90.64 (6)N2 ⁱ —Co1—Cl1 ⁱ 89.36 (6)N2—Co1—Cl189.36 (6) $126.08 = 10000000000000000000000000000000000$	N1—Co1—Cl1	87.60 (6)	N2—Co1—N1 ⁱ	102.57 (7)
N1 ⁱ —Co1—N1180.0C5—N1—Co1116.09 (15)N2 ⁱ —Co1—Cl190.64 (6)C1—N1—Co1126.08 (17)N2—Co1—Cl1 ⁱ 90.64 (6)N2 ⁱ —Co1—Cl1 ⁱ 89.36 (6)N2—Co1—Cl189.36 (6) $126 + 12$	N1—Co1—Cl1 ⁱ	92.40 (6)	N2—Co1—N2 ⁱ	180.0
N2iCo1ClN1Co1126.08 (17)N2Co1Co1OldN2iCo1ColN2Co1Co1ColColColCol	N1 ⁱ —Co1—N1	180.0	C5—N1—Co1	116.09 (15)
N2—Co1—Cl1i90.64 (6) $N2^{i}$ —Co1—Cl1i89.36 (6)N2—Co1—Cl189.36 (6)	N2 ⁱ —Co1—Cl1	90.64 (6)	C1—N1—Co1	126.08 (17)
N2—Co1—Cl1 89.36 (6)	N2—Co1—Cl1 ⁱ	90.64 (6)	N2 ⁱ —Co1—Cl1 ⁱ	89.36 (6)
	N2—Co1—Cl1	89.36 (6)		

Table S10 Selected bond length(Å) and angles(°) of Co-Cl

Symmetry code: (i) -x, -y+1, -z.

Table S11 Selected bond length(Å) and angles($^{\rm o})$ of $Co\text{-}H_2O$

Bond	Length/Angle	Bond	Length/Angle
Co1—O1	2.0962 (17)	Co1—N1	2.1357 (15)
Col—Ol ⁱ	2.0962 (17)	Co1—N2 ⁱ	2.0882 (16)
Co1—N1 ⁱ	2.1357 (15)	Co1—N2	2.0882 (16)
01-Co1-01 ⁱ	180.0	N2 ⁱ —Co1—O1 ⁱ	91.22 (7)
Ol ⁱ —Col—Nl ⁱ	90.17 (7)	N2 ⁱ —Co1—N1 ⁱ	77.80 (6)
O1—Co1—N1	90.17 (7)	N2 ⁱ —Co1—N1	102.20 (6)
Ol ⁱ —Col—Nl	89.83 (7)	N2—Co1—N1 ⁱ	102.20 (6)
O1—Co1—N1 ⁱ	89.83 (7)	N2—Co1—N1	77.80 (6)
N1 ⁱ —Co1—N1	180.0	N2 ⁱ —Co1—N2	180.0
N2 ⁱ —Co1—O1	88.78 (7)	Col—Ol—HlA	120 (2)
N2—Co1—O1 ⁱ	88.78 (7)	Col—Ol—H1B	124 (2)
N2—Co1—O1	91.22 (7)		

Symmetry code: (i) -x, -y+1, -z.

Figure S9 Proposed Formation Process.

UV-vis spectra of Co-Cl and Co-H₂O

Figure S10 UV-Vis spectra for diluted sample.

Figure S11 Diffuse reflectance spectroscopy of Co-Cl and Co-H₂O

IR spectra of Co-Cl and Co-H2O

Figure S12 IR spectrum for Co-Cl and Co-H₂O.