Failure Analysis of Hydrothermal Synthesis for Spinel Manganese-Cobalt Oxide

Zhao Li^{a,b}, Zhiguo Ren^{b,c}, Yuanxin Zhao^{b,c}, Shuaijin Wu^d, Yingying Yao^a, Xiaochuan Ren^e, Daming Zhu^{b,*}, Xiaolong Li^{b,*}, Jianxin Zou^{a,*}

^a National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, Shanghai Key laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^b Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

^c The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China-

^d China Nonferrous Metals Techno-Economic Research Institute Co., Ltd., Beijing 100080, China.

^e College of Texiles & Clothing, Qingdao University, Qingdao, Shandong, 266071, China

*Corresponding author:

Tel: +86-15107109191. E-mail: zhudaming@zjlab.org.cn.

Tel: +86-13761043433. E-mail: lixiaolong@zjlab.org.cn.

Tel: +86-15921793455. E-mail: zoujx@sjtu.edu.cn.

Supplementary information

Mn-Co-O	Weight content (wt%)		C Atomic content (at%)			C Atomic ratio		
	Mn	Со	0	□ Mn	Со	0	□ Mn/Co	Mn : Co
precursor	3.12	59.57	37.31	1.67	29.73	68.6	0.056	0.16 : 2.84
sample	3.64	73	23.36	2.4	44.8	52.8	0.054	0.15 : 2.85

Table S1 EDS mapping quantitative analysis of Mn-Co-O precursor and sample.

Table S2 The lattice parameter and quantified ratio of pure Co_3O_4 and Mn-doped Co_3O_4 (Mn- Co_3O_4) phase through Rietveld refinements against synchrotron and laboratory XRD, respectively.

Sampla	Phase	Crystal	Space	Lattice parameters	Ratio (wt%)	
Sample		system	group	a = b = c (Å)		
Synchrotron XRD	Co ₃ O ₄	-		8.10	73.9	
	Mn-Co ₃ O ₄	Cubic	Fd-3m	8.18	26.1	
Laboratory XRD	Co ₃ O ₄	Cubic	Ed 2ma	8.11	22.2	
	Mn-Co ₃ O ₄		ru-3m	8.24	77.8	

Phase	(h,k,l)	20 (°)	d-spacing (Å)
	111	8.45	4.68
	220	13.81	2.86
	311	16.21	2.44
Co.O.	222	16.94	2.34
0304	400	19.58	2.03
	422	24.05	1.65
	511	25.53	1.56
	440	27.55	1.45
	111	8.36	4.72
	220	13.68	2.89
	311	16.05	2.47
Mn-Co₂O₄	222	16.77	2.36
1111 20304	400	19.39	2.05
	422	23.80	1.70
	511	25.27	1.57
	440	27.83	1.43

Table S3 The confirmed diffraction peaks positions and calculated inter-atomicspacing (d-spacing) through the Rietveld refinement against synchrotron XRD.

Comple	Phase	Crystal system	Space group	Lattice parameters			Ratio
Sample				a (Å)	b (Å)	c (Å)	(wt%)
pure Co	Co_3O_4	Cubic	Fd-3m	8.10	8.10	8.10	100.0
Mn : Co = 1:1	Mn-Co ₃ O ₄	Cubic	Fd-3m	8.13	8.13	8.13	92.9
	CoMn ₂ O ₄	Tetragonal	I41/amd	5.73	5.73	9.31	7.1
Mn : Co = 2:1	Mn-Co ₃ O ₄	Cubic	Fd-3m	8.20	8.20	8.20	49.0
	CoMn ₂ O ₄	Tetragonal	I41/amd	5.73	5.73	9.31	51.0
pure Mn	Mn_2O_3	Cubic	1213	9.43	9.43	9.43	91.9
	γ-MnO ₂	Monoclinic	C2/m	15.10	2.98	4.21	8.1

Table S4 The refined lattice parameter and quantified ratio of Mn-Co-O sample usingdifferent molar feed ratio.

Fig. S1 The multipoint BET surface area and pore distribution of Mn-Co-O precursor

and sample.

Fig. S2 The laboratory XRD data and Rietveld refinement of Mn-Co-O sample.

Fig. S3 Electron imaging and diffraction characterization of a microarea of Mn-Co-O precursor. (a) TEM, (b) SAED and (c-f) HRTEM images.

Fig. S4 Synchrotron radiation XRD patterns with Rietveld refinement of Mn-Co-O precursor at different molar feed ratio. (a) pure Co source, (b) Mn : Co = 1 : 2, (c) Mn : Co = 1 : 1, (d) Mn : Co = 2 : 1, (e) pure Mn source.

Fig. S5 The powder X-ray diffraction pattern of standard Co_3O_4 , $MnCo_2O_4$, $CoMn_2O_4$ and Mn_3O_4 lattice structures, which are calculated and generated by Vesta 3.5.7 program.

Fig. S6 The XPS of Mn-Co-O precursor (a) and sample(b) with Mn 2p, Co 2p and O 1s spectra, respectively.

Fig. S7 The crystal lattice visualization of Co_3O_4 , $Mn^{(III, IV)}$ -doped Co_3O_4 , $Mn^{(II)}Co_2O_4$, and $Mn^{(II, III)}Co_2O_4$, $CoMn_2O_4$ and Mn_3O_4 .

Fig. S8 The XAS plots with TEY and TFY mode of Mn L-edge, Co L-edge and O L-edge before and after calcination of Mn-Co-O precursor.

Fig. S9 Raman spectra of Mn-Co-O precursor and sample with x-axis transformed into log10-scale.