Supporting Information

BiOI Nanoparticle/PCN-222 Heterojunctions for Self-Decontaminating Photocatalyst with Efficient Tetracycline Visible-Light Degradation

Heyao Zhang,^[+] Qing Meng,^[+] Hujie Li,^[+] Gaigai Wu, Ke Li, Jinghan Xu, Lianlian Wang, Jie Wu, * Xiangru Meng, Hongwei Hou*

*Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.

Correspondence Author: Prof. Jie Wu Email: <u>wujie@zzu.edu.cn</u> Correspondence Author: Prof. Hongwei Hou Email: <u>houhongw@zzu.edu.cn</u>

Content

Section S1. Experiment Section	.1
Section S2. Tables	.2
Section S3. XRD patterns	.2
Section S4. Tauc plot curves	.3
Section S5. Mott-Schottky plots	.3
Section S6. Catalytic experiments	.4
Section S7. Cyclic experiment	.4

Section S1. Experiment Section

All the chemicals were commercially available and used without further purification. PCN-222 was synthesized according to a previously reported procedure. Powder X-ray diffraction (PXRD) patterns were taken on a Bruker Advance D8 Powder X-ray Diffractometer with Ni-filtered Cu Ka radiation operating at 40 kV and 40 mA. The microstructural morphologies of the materials were characterized by a Zeiss Sigma 500 scanning electron microscopy (SEM) and a JEM-2100 transmission electron microscopy (TEM). Inductively coupled plasma emission spectroscopy (ICP-OES) was recorded on an PerkinElmer 8300 spectrometer. The N2 adsorption and desorption isotherms dates were collected at a MicrotracBEL Corp at 77 K and the Pore-size distributions were obtained using DFT calculations using a carbon slit-pore model with a N2 kernel. UV-vis Diffuse measured at the Spectra (UV-vis DRS) was JASCO V-750 UV-vis Reflectance spectrophotometer.Luminescence spectra was carried out on the Instrument JASCO FP-8300 fluorescence spectrometer.X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250Xi-type instrument with the excitation source of monochrome aluminum Ka ray source.Electron Spin Resonance (ESR) measurements were detected by a Bruker A300E spectrometer and the signals of the spin-trapped radicals were examined using the 5,5-dimethyl-1pyrroline N-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) under xenon lamp irradiation. Photoelectrochemical measurements were performed on a CHI660E electrochemical workstation using a standard three-electrode system.

The Synthesis of PCN-222.

ZrOCl₂•8H₂O (108.6 mg, 0.338 mmol), tetrakis(4-carboxyphenyl) porphyrin (H₂TCPP) ligand (30 mg, 0.0379 mmol), CF₃COOH (0.45mL) in 10 mL DMF were ultrasonically dissolved in a 20 mL Pyrex vial and the mixture was heated in 120°C for 16 h. After cooling down to room

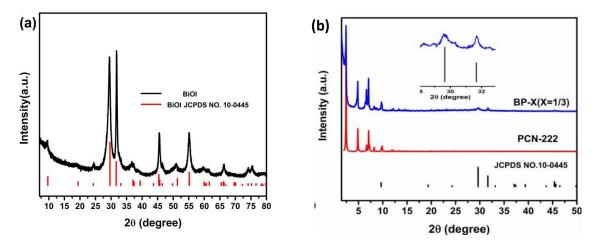
temperature, purple needle shaped crystals were harvested by filtration, washed with DMF and acetone, and then dried at 80 °C under vacuum.

Synthesis of BiOI

194.04 mg Bi(NO₃)₃.5H₂O (0.4 mmol) were added into 38 mL ethylene glycol solution with ultrasonication for 30 minutes to fully dispersed suspensiona suspension. After then 1 mL KI solution (0.4 mol/L) was dropped wise into the above solution with power ultrasound. The suspension was transferred to a 50 mL Teflon-lined autoclave and heated at 120°C for 6 h. After cooling down to room temperature, the powders were collected by filtration, washed with H₂O and ethanol, and then dried under vacuum.

Section S2. Tables

Sample	Zr ₆ :Bi (atomic ratio)	Band gap (eV)	BET surface area (m ² /g)
PCN-222	None	1.84	2069
BP-1	1.3:1	1.72	650
BP-3	3.2:1	1.78	660
BP-5	5.3:1	1.77	630


Table S1 The comparison of elemental analysis, band gaps and specific surface area for PCN-222, BP-1 and BP-3.

Zr₆:Bi atomic ratio were measured by ICP-OES.

Band gaps were obtained from UV-vis DRS.

BET surface areaa were detected by the N_2 adsorption and desorption isotherms dates.

Section S3. XRD patterns

Figure S1. PXRD patterns of (a) BiOI and (b) BP-X (X = 1/3).

Section S4. Tauc plot curves

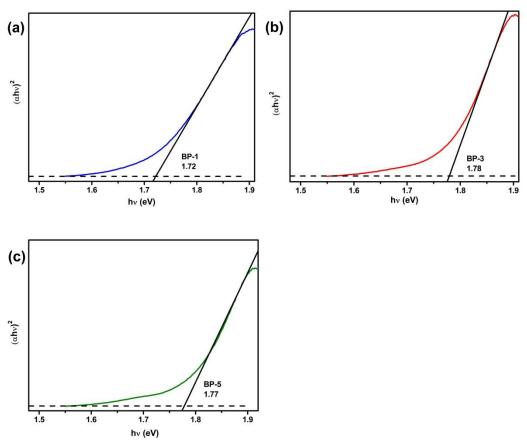


Figure S2. The Tauc plots of (a) BP-1, (b) BP-3 and (c) BP-5.

Section S5. Mott-Schottky plots

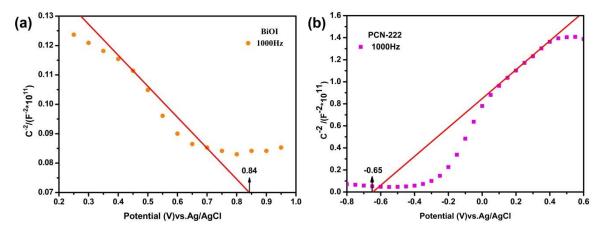
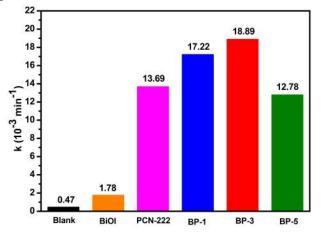



Figure S3. The Mott-Schottky of (a) BiOI and (b) PCN-222.

Section S6. Catalytic experiments

Figure S4. Comparison of the rate constants k for the photocatalytic degradation of tetracyclines according to the pseudo-first-order kinetic equation $\ln(C_t/C_0) = k_0 t$ (C_t is the concentration of TC at time t during photocatalytic process, C_0 is the initial concentration of TC after adsorption, k_0 stands for the pseudo-first order reaction rate constant (min⁻¹) and t is the photocatalytic reaction time (min)).

Section S7. Cyclic experiment

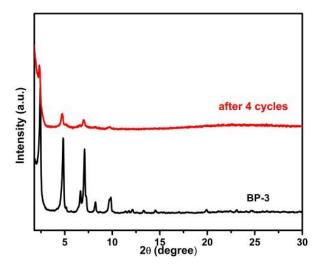


Figure S5. PXRD patterns of BP-3 before and after 4 rounds of photocatalytic reaction.