Supporting Information

Metal-organic framework (MOF)-derived hollow hybrid Cu₂O/Cu/Au for non-enzymatic H₂O₂ sensing

Huan Chen,^a Lei Shao,^a Junchao Ma,^a Jun Zhou^b and Yu Fu*^a

Department of chemistry, College of Sciences, Northeastern University, Shenyang

110819, P. R. China.

Corresponding author: Yu Fu, Email: fuyu@mail.neu.edu.cn

Figure S1. (a) PXRD patterns of MOF-74-simulated and MOF-74 (Cu); (b) PXRD pattern of Cu₂O/Cu/Au, standard PDF cards of Cu₂O (red vertical lines) and Cu (blue vertical lines); (c) TEM image of Cu₂O/Cu; (d) HRTEM image of Cu₂O/Cu.

Figure S2. Nyquist plots of Cu₂O/Cu-modified GCE and Cu₂O/Cu/Au-modified GCE in the presence of 0.1 M K₃Fe(CN)₆/K₄Fe(CN)₆ with 0.1 M KCl solution. The equivalent circuit used to fit the EIS response is shown in the insert.

Figure S3. The schematic diagram of the catalytic mechanism for the reduction of H_2O_2 by Cu₂O/Cu/Au electrode

Figure S4. (a) The response time of Cu₂O/Cu/Au toward H₂O₂; (b) the antiinterference and selectivity toward H₂O₂ of Cu₂O/Cu/Au.

Figure S5. The response current density of hollow Cu₂O/Cu/Au toward disinfectant.