Supporting Information for

Crystal engineering, electron density analysis and in-situ variable temperature studies of co-crystal between nicotinic acid and gallic acid sesquihydrate.

Infal Iqbal^a, Arshad Mehmood,^b Sajida Noureen^{*a}, Claude Lecomte^{c,d,} Maqsood Ahmed^{*a}

^aMaterials Chemistry Laboratory, Institute of Chemistry, The Islamia University, of Bahawalpur, Baghdadul-Jadeed campus, 63100, Pakistan.

^bDepartment of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas, USA, 76129.

^c Université de Lorraine; Laboratoire CRM2, UMR CNRS 7036, Boulevard des aiguillettes BP70239, Vandoeuvre-les-Nancy, 54506, France
 ^d CNRS, Laboratoire CRM2, UMR CNRS 7036, Boulevard des aiguillettes BP70239, Vandoeure-les-Nancy, 54506, France.

Correspondence: sajida.noureen@iub.edu.pk, Maqsood.ahmed@iub.edu.pk

Figure S1A: Deformation electron density maps of GA1 and GA2 after IAM refinement (I), residual electron density maps after multipolar refinement experimental (II) and (III) after MM refinement of theoretical structure factors at contour level of 0.05 e Å⁻³ and with $\sin\theta_{Max}/\lambda=0.7$ Å⁻¹.

Figure S1B: Deformation electron density maps of NA1 and NA2 after IAM refinement (I), residual electron density maps after multipolar refinement experimental (II) and (III) after MM refinement of theoretical structure factors at contour level of 0.05 e Å⁻³ and with $\sin\theta_{Max}/\lambda=0.7$ Å⁻¹.

Figure 1SC: Residual electron density maps of GA1,GA2,NA1 and NA2 after experimentally multipolar refinement. contour level of 0.05 e Å⁻³ $\sin\theta_{Max}/\lambda$ =1.163 Å⁻¹.

Figure S2(a): The powder XRD pattern of GANA co-crystal experimentally determined (black) and simulated powder pattern from single crystal data(red) using Mercury software. The intensity of the experimental pattern is manifold higher than the simulated. The position of the peaks till 50° is comparable, which is the upper limit of the simulated pattern.

Figure S2(b): A fractal dimensions plot comparing the residual electron densities after experimental and theoretical $(\sin\theta/\lambda \text{ of } 1.163 \text{ Å}-1)$ multipolar refinements.

Figure S3: Residual mass after in situ heating GANA co-crystal at 362K (*a*), single crystal obtained from this residual mass (*b*).

Figure S4: GANA co-crystal unit cell volume expansion with increase in temperature.

Table S1 (a): estimated A	ADPs for H atoms	calculated from	SHADE	server.
---------------------------	------------------	-----------------	-------	---------

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
H4	0.022712	0.025149	0.020224	0.0142	0.006122	0.001855
H14A	0.02818	0.03036	0.019821	0.019391	0.010529	0.001433
H19	0.028369	0.034685	0.013168	0.019246	0.005856	0.002328
H3A	0.028209	0.031886	0.023217	0.021452	0.011817	0.003951
H20	0.029919	0.032951	0.020766	0.022372	0.011424	0.003116
H7A	0.027088	0.03092	0.016197	0.017048	0.007241	0.001924
H25	0.025658	0.034985	0.019859	0.021885	0.005407	0.007092
H24	0.029928	0.030467	0.022195	0.021479	0.010366	0.003264
H18	0.031931	0.034269	0.021271	0.023485	0.012779	0.003657

H10A	0.023581	0.034819	0.021393	0.021696	0.00685	0.005508
H26	0.030384	0.029688	0.021138	0.020689	0.010438	0.002707
H23	0.026894	0.031858	0.013621	0.017524	0.004309	0.000875
H17	0.026802	0.037691	0.020796	0.024377	0.007548	0.007048
H15A	0.02248	0.029489	0.028434	0.011843	0.016221	0.008699
H15B	0.030115	0.019288	0.028899	0.014511	0.013689	0.007412
H17B	0.025787	0.03431	0.024794	0.018314	0.014452	0.008145
H17A	0.019581	0.034545	0.022786	0.016586	0.005392	0.00624
H16A	0.031352	0.026584	0.027024	0.018926	0.013291	0.012458
H16B	0.018047	0.029321	0.028417	0.010105	0.009768	0.005795
H7	0.021767	0.028612	0.013916	0.01508	0.004632	0.00188
Н9	0.023543	0.028518	0.017479	0.017079	0.0089	0.003064
H10	0.022157	0.021741	0.019402	0.013125	0.006852	0.000637
H8	0.022628	0.029299	0.017859	0.018523	0.006741	0.005051
H14	0.026517	0.034037	0.018289	0.022358	0.006646	0.005722
H5	0.022635	0.028629	0.02088	0.017369	0.007871	0.006111
H1	0.021068	0.026421	0.019269	0.015984	0.007533	0.005112
H3	0.023231	0.029612	0.020839	0.018167	0.009677	0.004884
H2	0.028043	0.033191	0.013763	0.019091	0.005314	0.002199

Table S1 (b): Chemical equivalent constrains.

C14	C3	C7	C10				
C12	C5						
C11	C4	C13					
C19	C25						
C20	C26						
C8	C1						
C22	C16						
C24	C18						
C23	C17						
H4	H9	H10	H8	Η	5	H3	
H14A	H3A	H7A		H10A			
H19	H20	H25	H2	26			
H24	H18						
H23	H17						
H15A	H15B	H17I	В	H17A	L	H16A	H16B
H7	H1						
H14	H2						
H4	H15A	H7					
H14A	H24	H23					

 Table S1(c): DFT calculated distances with restrain values.

Atom 1	Atom2	Distance (Å)	Restrain
07	H7	0.99827	0.001
01	H1	1.01827	0.001
09	H9	0.99289	0.001
010	H10	0.99878	0.001
04	H4	0.99581	0.001
05	H5	0.97843	0.001
08	H8	1.00351	0.001
03	H3	0.99675	0.001
N2	H2	1.02491	0.001
N1	H14	1.08752	0.001
016	H16B	0.99508	0.001
016	H16A	0.9953	0.001
017	H17B	0.9819	0.001
017	H17A	0.98564	0.001
015	H15A	0.98713	0.001
015	H15B	0.97777	0.001
C14	H14A	1.07852	0.001
C19	H19	1.08087	0.001
C3	H3A	1.07976	0.001
C20	H20	1.07945	0.001
C7	H7A	1.07977	0.001
C25	H25	1.07812	0.001
C24	H24	1.07882	0.001
C18	H18	1.08104	0.001
C10	H10A	1.07856	0.001
C26	H26	1.07993	0.001
C23	H23	1.082	0.001
C17	H17	1.07956	0.001

Table S2:

	Temperature	Volume (Å ³)
1	100K	1334.57(6)
2	298K	1370.51 (9)
3	310K	1367.1(8)
4	350K	1379.9(15)
5	355K	1382.1(10)
6	360K	1376.0(11)
7	361K	33140(14) melting
8	365K	1406(5)

Effect of temperature on unit cell volume of co-crystal

Table S3: Topological properties of (3, -1) CPs on the covalent interactions: distances (Å), electron density (eÅ⁻³), Laplacian (eÅ⁻⁵), Hessian eigenvalues (eÅ⁻⁵), $\varepsilon =$ ellipticity, $G_{CP}=$ bond kinetic energy density (Hartree Å⁻³) and $V_{CP} =$ bond potential energy density (Hartree Å⁻³).

The upper line in each pair gives the experimental values and the lower one the theoretical values.

	Interacting atoms	d ₁₂ (Å)	d1cp (Å)	d2cp (Å)	ρ(rb) (e/Å ³)	$\nabla^2 \rho(c)$ p) (e/Å ⁵)	λ ₁ (e/Å ⁵)	λ ₂ (e/Å ⁵)	λ ₃ (e/Å ⁵)	3	Gcp	Vcp
1	0(6%	1.226	0.809(2)	0.417(1)	2.828(3)	23.832	27.350	-24.620	28.140	0.111	3.435	-8.539
	00-08	1.226	0.775	0.451	2.704	25.937	-23.05	-20.95	18.06	0.101	3.014	-7.913
2	02 01	1.230	0.811(1)	0.419(1)	2.814(2)	25.223	27.030	-24.340	26.160	0.111	3.332	-8.429
	02	1.230	0.769	0.461	2.654	25.378	22.550	-20.490	17.660	0.101	2.905	-7.587
3	012-015	1.245	0.824(2)	0.421(2)	2.671(1)	21.401	25.100	-23.170	26.870	0.083	3.135	-7.769
	012-015	1.245	0.768	0.477	2.602	25.169	21.910	-20.040	16.780	0.093	2.782	-7.326
4	014 C21	1.260	0.825(1)	0.435(1)	2.638(3)	- 29.727	24.300	-22.310	16.880	0.089	2.661	-7.404
	014021	1.260	0.772	0.488	2.544	- 24.485	20.800	-19.130	15.450	0.088	2.669	-7.052
5	012 C21	1.257	0.820(2)	0.437(3)	2.630(3)	30.433	24.010	-22.380	15.960	0.073	2.610	-7.350
	O13—C21	1.257	0.773	0.484	2.515	23.952	20.480	-18.980	15.510	0.080	2.623	-6.922
6	011—C15	1.278	0.835(1)	0.443(3)	2.552(1)	29.998	22.950	-21.510	14.460	0.067	2.431	-6.963

		1.278	0.770	0.508	2.402	20.836	- 19.530	-17.840	16.530	0.095	2.491	-6.442
7	N2 C2(1.339	0.822(1)	0.517(1)	2.360(3)	- 29.120	- 19.080	-16.850	6.810	0.133	2.005	-6.049
	N2C26	1.339	0.773	0.566	2.166	- 15.957	- 17.120	-14.890	16.050	0.150	2.172	-5.461
8	N1 C20	1.341	0.811(1)	0.530(1)	2.337(2)	27.854	- 18.750	-16.660	7.560	0.126	2.010	-5.970
	NI-C20	1.341	0.766	0.575	2.149	- 14.724	- 16.740	-14.770	16.790	0.134	2.191	-5.412
9	N2 C25	1.346	0.818(1)	0.527(1)	2.302(1)	25.607	- 17.850	-15.920	8.160	0.121	2.032	-5.857
	N2	1.346	0.786	0.560	2.148	16.331	- 16.510	-14.930	15.100	0.106	2.112	-5.367
10	N1 C10	1.342	0.811(1)	0.531(1)	2.294(3)	- 25.244	- 17.670	-15.940	8.370	0.109	2.029	-5.826
	NIC19	1.342	0.771	0.571	2.162	15.201	- 16.710	-14.690	16.200	0.137	2.196	-5.456
11	695 694	1.382	0.707(1)	0.675(1)	2.233(1)	21.805	- 17.030	-14.050	9.280	0.212	2.049	-5.625
	C25—C24	1.382	0.712	0.670	2.103	- 15.982	- 16.090	-13.620	13.730	0.181	2.028	-5.176
12	C10 C10	1.384	0.708(1)	0.676(1)	2.227(2)	21.640	- 16.970	-14.000	9.330	0.212	2.044	-5.603
	C19—C18	1.384	0.710	0.674	2.094	- 15.695	- 16.030	-13.450	13.780	0.191	2.024	-5.147
13	01 61	1.319	0.866(1)	0.453(1)	2.225(1)	24.501	- 18.380	-17.750	11.630	0.036	1.906	-5.528
	01	1.319	0.794	0.525	2.129	- 16.222	- 16.560	-15.600	15.940	0.062	2.076	-5.287
14	07 68	1.329	0.873(2)	0.457(1)	2.220(2)	25.047	- 18.330	-17.550	10.830	0.045	1.868	-5.490
	0/08	1.329	0.793	0.537	2.114	15.408	- 16.410	-15.410	16.420	0.065	2.08	-5.239
15	C20 C1(1.388	0.725(1)	0.663(2)	2.214(1)	21.162	- 17.010	-13.980	9.820	0.216	2.036	-5.553
	C20—C16	1.388	0.713	0.676	2.085	- 15.620	- 15.920	-13.350	13.640	0.193	2.008	-5.11
16	C22—C26	1.390	0.664(1)	0.726(1)	2.207(1)	21.008	- 16.950	-13.930	9.880	0.217	2.028	-5.528
		1.390	0.678	0.712	2.046	-	-	-13.030	13.450	0.206	1.938	-4.946

						15.294	15.710					
17		1.389	0.679(2)	0.710(1)	2.194(1)	20.729	- 17.160	-13.400	9.830	0.281	2.011	-5.473
	C3—C4	1.389	0.684	0.706	2.070	- 15.277	- 15.920	-12.900	13.540	0.234	1.991	-5.051
18	C14 C13	1.392	0.681(1)	0.710(1)	2.189(1)	20.546	- 17.110	-13.350	9.920	0.282	2.008	-5.454
	014015	1.392	0.678	0.714	2.050	- 14.873	- 15.870	-12.520	13.520	0.268	1.966	-4.973
19	C11 C10	1.392	0.711(1)	0.681(1)	2.189(1)	20.540	- 17.110	-13.350	9.920	0.281	2.008	-5.455
	CII—CI0	1.392	0.720	0.671	2.064	- 15.205	- 16.100	-12.570	13.460	0.281	1.981	-5.026
20	C18 C17	1.392	0.681(1)	0.711(1)	2.184(1)	20.942	- 16.650	-13.970	9.680	0.192	1.978	-5.423
	010-017	1.392	0.691	0.701	2.018	- 14.706	- 15.250	-13.120	13.670	0.163	1.904	-4.838
21	C24 C23	1.395	0.682(1)	0.713(1)	2.176(1)	20.738	- 16.580	-13.900	9.750	0.192	1.970	-5.392
	024-025	1.395	0.691	0.704	2.042	- 14.709	- 15.350	-13.270	13.910	0.157	1.955	-4.94
22	O15 H15B	0.977	0.769(1)	0.208(1)	2.175(2)	36.993	- 34.380	-34.290	31.680	0.002	1.209	-5.007
		0.977	0.732	0.245	2.225	- 24.971	30.750	-30.590	36.370	0.005	1.883	-5.514
23	O5H5	0.979	0.764(1)	0.215(1)	2.173(1)	34.706	- 34.550	-34.410	34.260	0.004	1.311	-5.053
	05-115	0.979	0.739	0.240	2.143	25.181	- 30.440	-30.270	35.520	0.006	1.688	-5.138
24	C6C5	1.400	0.708(2)	0.692(1)	2.165(1)	20.398	- 17.460	-13.200	10.260	0.323	1.962	-5.353
		1.400	0.698	0.703	2.026	- 15.571	- 16.060	-12.440	12.930	0.290	1.882	-4.853
25	C12—C13	1.398	0.702(1)	0.697(1)	2.164(1)	20.546	17.360	-13.010	9.820	0.334	1.953	-5.344
	012 013	1.398	0.699	0.700	2.118	- 16.748	- 16.900	-13.030	13.190	0.297	2.026	-5.224
26	C12—C11	1.403	0.704(2)	0.699(1)	2.156(1)	20.317	- 17.150	-13.060	9.890	0.313	1.945	-5.313
	012 011	1.403	0.709	0.694	2.067	15.906	- 16.500	-12.550	13.140	0.314	1.955	-5.023

28	C4 C5	1.403	0.700(1)	0.704	2.154	20.303	- 17.130	-13.050	9.880	0.313	1.941	-5.304
	C4—C3	1.403	0.707	0.697	2.035	- 15.346	- 16.060	-12.420	13.130	0.293	1.910	-4.895
29	C6 C7	1.391	0.709	0.683	2.152	- 20.134	- 16.910	-13.340	10.120	0.268	1.944	-5.297
	C0C7	1.391	0.713	0.678	2.068	15.403	- 16.050	-12.800	13.450	0.254	1.979	-5.036
30		1.393	0.678	0.716	2.147	- 19.866	- 16.250	-13.690	10.080	0.187	1.946	-5.284
	022-025	1.393	0.689	0.705	2.066	15.734	- 15.700	-13.360	13.330	0.175	1.960	-5.021
31	C1(C17	1.395	0.679	0.716	2.142	- 19.742	- 16.210	-13.650	10.120	0.187	1.941	-5.265
	C10—C17	1.395	0.697	0.697	2.023	- 14.976	15.230	-13.010	13.260	0.171	1.903	-4.855
32	017 11170	0.982	0.769	0.213	2.140	34.915	33.360	-33.030	31.480	0.010	1.228	-4.901
	01/—п1/в	0.982	0.741	0.241	2.145	24.905	- 30.140	-29.900	35.140	0.008	1.707	-5.157
33	00 10	0.992	0.772	0.221	2.139	32.541	- 33.440	-32.970	33.860	0.014	1.336	-4.950
	09—н9	0.992	0.752	0.241	2.043	23.050	- 28.950	-28.710	34.610	0.008	1.569	-4.752
34	01(111(D	0.995	0.779	0.216	2.136	34.582	32.990	-32.550	30.960	0.013	1.234	-4.890
	010—п10В	0.995	0.751	0.244	2.055	22.606	- 28.480	-28.210	34.090	0.009	1.616	-4.815
35	016 1116	0.995	0.779(2)	0.216(2)	2.136(1)	34.580	32.980	-32.550	30.960	0.013	1.235	-4.890
	010—п10А	0.995	0.748	0.247	2.059	21.025	- 28.110	-27.880	34.960	0.008	1.698	-4.869
36	015 11154	0.987	0.773(2)	0.214(2)	2.135(2)	34.502	32.980	-32.830	31.310	0.005	1.235	-4.886
	U13—H13A	0.987	0.744	0.242	2.127	24.453	- 29.740	-29.520	34.810	0.007	1.688	-5.087
37	017 11174	0.985	0.770(1)	0.214(1)	2.128(1)	- 34.169	- 32.940	-32.600	31.370	0.010	1.236	-4.863
	UI/—HI/A	0.985	0.746	0.239	2.099	24.303	- 29.650	-29.360	34.700	0.010	1.632	-4.965
38	O3—H3	0.996	0.773(1)	0.224(2)	2.121(2)	-	-	-32.190	33.780	0.016	1.361	-4.902

						31.130	32.720					
		0.996	0.754	0.243	1.998	20.110	27.770	-27.550	35.210	0.008	1.609	-4.626
38	04 14	0.995	0.771(1)	0.224(2)	2.116(1)	31.006	32.500	-32.220	33.710	0.009	1.357	-4.885
	04—п4	0.995	0.754	0.241	2.041	23.419	28.820	-28.760	34.170	0.002	1.547	-4.733
39	010 110	0.998	0.771(2)	0.227(1)	2.102(1)	- 29.966	32.140	-31.410	33.580	0.023	1.375	-4.849
	010—1110	0.998	0.754	0.244	2.037	22.972	- 28.650	-28.240	33.920	0.015	1.559	-4.727
40	O8—H8	1.003	0.776(1)	0.227(2)	2.101(3)	29.892	31.940	-31.640	33.690	0.009	1.376	-4.845
	00 110	1.003	0.761	0.242	1.979	21.636	27.760	-27.670	33.790	0.003	1.498	-4.510
41	C9-C14	1.400	0.698(1)	0.702(2)	2.095(2)	- 18.477	- 15.970	-12.740	10.230	0.253	1.896	-5.085
		1.400	0.706	0.694	1.989	13.729	- 14.900	-12.130	13.300	0.228	1.889	-4.740
42	C9—C10	1.401	0.698(1)	0.703(1)	2.090(2)	- 18.444	- 15.970	-12.720	10.240	0.256	1.887	-5.065
		1.401	0.697	0.704	1.979	13.900	- 14.920	-12.270	13.280	0.216	1.860	-4.693
43	C2—C7	1.398	0.705(1)	0.694(2)	2.088(2)	- 18.444	15.930	-12.950	10.430	0.230	1.882	-5.055
		1.398	0.699	0.700	1.969	13.395	- 14.820	-12.240	13.660	0.211	1.861	-4.660
44	C2—C3	1.400	0.701(1)	0.699(1)	2.068(3)	17.991	15.790	-12.670	10.470	0.247	1.860	-4.980
		1.400	0.701	0.698	1.936	12.900	14.560	-11.930	13.590	0.220	1.815	-4.533
45	O8—C11	1.353	0.826(1)	0.528(2)	2.068(1)	19.563	- 16.160	-14.740	11.340	0.096	1.786	-4.941
		1.353	0.793	0.560	1.946	10.102	- 14.400	-13.670	17.970	0.054	1.968	-4.643
46	O9—C12	1.355	0.828(1)	0.527(1)	2.050(2)	18.363	- 15.990	-14.410	12.040	0.110	1.803	-4.891
	57 512	1.355	0.792	0.563	1.922	-9.198	- 14.500	-13.160	18.460	0.102	1.961	-4.565
47	O3—C4	1.359	0.822(1)	0.537(1)	2.049(2)	- 18.787	- 16.070	-14.510	11.790	0.107	1.781	-4.877

		1.359	0.792	0.567	1.915	-8.731	- 13.950	-13.210	18.420	0.056	1.966	-4.543
48	010 012	1.366	0.826(1)	0.540(1)	2.041(2)	- 18.423	- 15.970	-14.460	12.010	0.105	1.781	-4.851
	010-013	1.366	0.795	0.571	1.872	-7.998	13.640	-12.760	18.400	0.069	1.913	-4.386
49	04 05	1.360	0.829(1)	0.531(1)	2.036(1)	- 17.911	- 15.790	-14.350	12.230	0.100	1.794	-4.841
	04—03	1.360	0.792	0.567	1.912	-8.226	- 14.060	-12.910	18.740	0.089	1.984	-4.544
50	07 117	0.997	0.780(1)	0.218(2)	2.028(2)	29.831	31.230	-31.120	32.520	0.004	1.221	-4.530
	0/—н/	0.997	0.759	0.238	2.008	22.351	27.820	-27.670	33.140	0.005	1.527	-4.620
51	01 111	1.018	0.790(2)	0.227(1)	1.971(3)	26.031	29.110	-29.100	32.180	0.001	1.275	-4.373
	ОІ—ні	1.018	0.771	0.247	1.924	- 20.244	25.910	-25.900	31.570	0.001	1.449	-4.316
52	05 66	1.366	0.836(1)	0.531(2)	1.965(1)	- 17.719	15.220	-14.030	11.540	0.085	1.652	-4.544
	05-00	1.366	0.796	0.571	1.871	-7.852	- 13.910	-12.600	18.660	0.104	1.917	-4.384
53	C2 C1	1.479	0.696(1)	0.783(1)	1.883(1)	- 16.707	- 14.220	-11.670	9.180	0.218	1.528	-4.226
	02-01	1.479	0.701	0.777	1.769	- 11.418	- 12.940	-11.020	12.540	0.174	1.547	-3.893
54	C26 H26	1.079	0.741(1)	0.338(1)	1.865(2)	- 18.836	- 18.810	-17.730	17.700	0.060	1.392	-4.103
	020-1120	1.079	0.721	0.358	1.918	- 18.157	- 18.780	-18.130	18.760	0.036	1.534	-4.339
55	C20 U20	1.079	0.742(1)	0.338(2)	1.864(1)	- 18.784	- 18.770	-17.730	17.720	0.059	1.393	-4.101
	C20—1120	1.079	0.723	0.357	1.875	- 17.042	- 18.260	-17.630	18.840	0.036	1.496	-4.185
56	C0 C°	1.483	0.689(1)	0.794(1)	1.856(3)	16.125	- 13.970	-11.290	9.140	0.238	1.501	-4.132
	09-08	1.483	0.708	0.775	1.709	- 10.965	12.670	-10.670	12.370	0.188	1.453	-3.673
57	С17—Н17	1.079	0.735(1)	0.344(1)	1.839(3)	18.356	18.130	-17.330	17.110	0.046	1.362	-4.009
		1.079	0.721	0.358	1.852	-	-	-17.400	18.410	0.014	1.470	-4.103

						16.619	17.630					
58		1.025	0.796(2)	0.229(1)	1.836(1)	- 19.941	25.250	-25.200	30.510	0.002	1.282	-3.960
	N2—H2	1.025	0.775	0.250	1.998	- 21.846	- 26.220	-25.650	30.020	0.022	1.529	-4.587
59	C25 H25	1.078	0.733(1)	0.345(1)	1.836(1)	- 17.964	- 18.010	-17.110	17.150	0.053	1.374	-4.006
	025-1125	1.078	0.720	0.358	1.869	- 16.928	- 17.950	-17.520	18.550	0.024	1.489	-4.163
60	C10 H104	1.078	0.716(1)	0.362(1)	1.832(3)	- 17.088	- 17.540	-16.560	17.010	0.059	1.408	-4.011
		1.078	0.704	0.374	1.841	- 15.674	- 17.250	-16.460	18.040	0.048	1.492	-4.082
61	C14 H14A	1.078	0.717(2)	0.362(1)	1.831(2)	- 17.074	- 17.540	-16.550	17.010	0.060	1.407	-4.009
		1.078	0.706	0.373	1.797	- 14.995	- 16.790	-16.100	17.900	0.043	1.436	-3.922
62	С23 Н23	1.082	0.737(1)	0.345(2)	1.830(1)	- 18.136	- 17.960	-17.270	17.090	0.040	1.355	-3.979
	025-1125	1.082	0.717	0.365	1.867	- 16.447	- 17.540	-17.380	18.470	0.010	1.508	-4.167
63	C10 H10	1.081	0.736(1)	0.346(2)	1.827(1)	- 17.741	- 17.860	-17.010	17.130	0.050	1.366	-3.975
		1.081	0.725	0.356	1.893	- 16.897	- 18.100	-17.760	18.970	0.019	1.541	-4.265
64	C3 H3A	1.079	0.717(1)	0.363(1)	1.826(2)	- 16.997	- 17.480	-16.490	16.970	0.060	1.400	-3.991
		1.079	0.701	0.379	1.801	15.072	- 16.710	-15.900	17.540	0.051	1.439	-3.934
65	С7—Н7А	1.080	0.717(1)	0.363(2)	1.824(1)	- 16.980	- 17.440	-16.470	16.930	0.059	1.397	-3.982
		1.080	0.706	0.374	1.824	15.343	- 16.980	-16.380	18.020	0.037	1.473	-4.021
66	С24—Н24	1.079	0.741(1)	0.337(1)	1.802(3)	- 17.977	- 17.760	-17.060	16.840	0.041	1.306	-3.870
	521 1127	1.079	0.712	0.366	1.847	- 16.011	- 17.250	-16.850	18.090	0.024	1.489	-4.098
67	С18—Н18	1.081	0.743(1)	0.338(1)	1.796(1)	- 17.841	- 17.680	-16.980	16.820	0.041	1.301	-3.851
	510 1110	1.081	0.715	0.366	1.838	- 16.129	- 17.280	-16.780	17.940	0.030	1.464	-4.058

68	C22—C21	1.504	0.736(1)	0.769(2)	1.781(2)	- 14.051	13.050	-11.100	10.100	0.175	1.448	-3.880
		1.504	0.750	0.754	1.702	10.527	12.360	-10.820	12.660	0.143	1.460	-3.658
69	C15—C16	1.509	0.761(1)	0.748(1)	1.740(3)	13.665	12.550	-11.010	9.900	0.140	1.386	-3.729
		1.509	0.761	0.748	1.684	10.053	12.200	-10.700	12.860	0.140	1.447	-3.597
70) N1—H14	1.087	0.829(1)	0.258(1)	1.628(3)	12.432	20.450	-19.860	27.870	0.030	1.231	-3.332
		1.087	0.821	0.267	1.671	- 13.118	- 20.280	-19.970	27.130	0.015	1.280	-3.478

Hirshfeld Surface Analysis and Fingerprint plots

The Hirshfeld surface alongwith interacting neighboring molecules is shown in figure S7, red spots in the vicinity of all oxygen and nitrogen atoms highlight the stronger intermolecular interactions while white region shows the weak H····H contacts. Fingerprint plots of co-crystal (Figure S8) were generated with d_{norm} , normalized contact distance in terms of d_e and d_i , using *CrystalExplorer* [45]. The two sharp spikes exhibiting the O···H/H···O contacts accounting 37.9% of interactions, the broader region between these spikes shows the H···H contacts of 26.54% of total interactions indicates that these short contacts play a crucial role in the co-crystal assembly, while the wing shaped upper area shows the H···C/C···H interactions of 16.1%. Moreover, O···C, C···C, N···H and O···O interactions show 10.2%, 5.5%, 1.4% and 1.3% contribution in co-crystal assembly and its packing; whereas the N···C interactions are the major contributing interactions involved in co-crystal assembly and crystal water molecules are responsible for these interactions.

Figure S5: The Hirshfeld surface of GANA co-crystal, with its interacting molecules. The symmetry codes are same as in table 2.

Figure S6: Fingerprint plots showing the percentage of interactions in the GANA co-crystal.

Electron density maps and topological study of covalent bonds

The static deformation density maps of all the molecules after experimental and theoretical multipole refinement (figure S9) show the accumulation of electron density between the connected atoms, nature of bonding and oxygen atoms lone pairs position of carbonyl and hydroxyl groups of all molecules. All the carbonyl oxygen atoms O2, O6, O12, O13 and carboxylate (O11 and O14) lone pairs are bilobed, while the lone pair of water molecules are in tetrahedral manner above and below the plane of water molecule as shown in figure S10 for O17-water molecule. All these findings are consistent with the detailed analysis of lone pairs of oxygen acceptor atom of carbonyl and hydroxyl groups in literature [51] and both experimental and theoretical static electron density maps are in agreement. For comprehensive analysis of intramolecular and intermolecular interactions involved in co-crystal assembly, the topological analysis of the electron density of co-crystal based on QTAIM [34] has been performed using VMoPro [52]. The bond critical points (bcps) search for all bonds found (3, -1) and negative value of Laplacian of electron density, which reflects the covalent bond nature of all bonds in the co-crystal. In homonuclear C-C bonds, the bcps are present in the middle, while in hetronuclear bonds (O-C, N-C, C-H, N-H, O-H) the bcps are away from the middle of the bond and shifted towards the either electropositive atom. The experimental topological properties including electron density ρ_{bcp} (r) and the Laplacian of electron density $\nabla^2 \rho_{bcp}$ (r) of cocrystal have been calculated and compared with the corresponding theoretical structure factors from DFT calculations in the cocrystal (Table S1).

Figure S7(*a*): The static electron density maps of experimental data (a) GA1 molecule, (b) GA2 molecule, (c) NA1 molecule and (d) NA2 molecule.

Figure S7(*b***):** The static electron density maps of Theoretical data (a) GA1 molecule, (b) GA2 molecule, (c) NA1 molecule and (d) NA2 molecule.

Electron density ρ_{bcp} (r):

Electron density, a physical observable quantity which is maximum around nuclei and appears to be featureless away from nuclei. It is used to describe the bonding situation and chemical reactivity [53]. The electron density ρ_{cp} (r) in the aromatic ring C—C bond ranges from 1.96/1.87eÅ⁻³ to 2.23/2.10 eÅ⁻³ in which C24—C25 bonding region of NA2 molecule has highest charge accumulation, the corresponding

experimental and theoretical electron density ρ_{cp} (r) values are 2.23 eÅ⁻³ and 2.10 eÅ⁻³ respectively. As expected, all non-aromatic C-C bonds have low charge accumulation as compared to aromatic bonds following the same trend in the theory with the corresponding average value of electron density 1.82 eÅ-3 and 1.72 eÅ-3 respectively. The C=O bond of carboxyl groups of GA molecules have highest charge accumulation at the bcps, with corresponding average values of experimental and theoretical electron density 2.82eÅ⁻³ and 2.68 eÅ⁻³ respectively. In NA molecules, the carboxylate anion (C=O⁻) and C=O bonds have almost equal charge accumulation with an average value of 2.62 eÅ⁻³ and 2.52 eÅ⁻³ for experimental and theoretical electron densities respectively. [Table S3]. The C-H bonds of aromatic rings of GA and NA molecules have almost equal charge accumulation with an average electron density value 1.83/1.85 eÅ⁻ ³. Among O—H bonds, the charge accumulation in carboxyl group and aromatic hydroxyl groups is unequal; the charges in the O—H aromatic ring bonds is highly concentrated [average value 2.12/2.04eÅ⁻³] as compared to O-H carboxyl bond [1.99/1.97eÅ-3]. Relatively, the average electron density of O-H bonds of water molecules is 2.14 eÅ-3 and 2.12 eÅ-3 for experimental and theoretical respectively. In C-N⁺—H bonds of pyridinum zwitterion, C—N bonds have an average charge accumulation of 2.33/2.16 eÅ⁻³, while N—H bonds have an average electron density of 1.73/1.83 eÅ⁻³, in N—H bond the predicted electron density value is greater than the experimentally determined electron density.

Laplacian of electron density $\nabla^2 \rho bcp(r)$:

Laplaican of electron density, an important electronic property at bcps, explains the nature of bonds in a molecule. Topological analysis including Laplacian of electron density $\nabla^2 \rho_{bcp}$ (*r*) has been carried out for experimental and theoretical structure factors and their comparison is given in table S3 and figure S11. In this GANA co-crystal, the Laplacian of electron density $\nabla^2 \rho_{bcp}$ (*r*) at all the *bcps* is negative, so the electronic charge is locally concentrated and potential energy dominates, which exhibits the shared shell interactions termed as covalent bonds. The relief maps of the Laplacian of electron density in aromatic ring planes of experimental data and these maps are in good agreement with the theoretical maps in figure S8. In the aromatic C—C bonds of co-crystal, the Laplacian of electron density $\nabla^2 \rho_{bcp}$ (*r*) ranges from -17.72/-7.85 eÅ⁻⁵ to -21.80/-15.98 eÅ⁻⁵, while the Laplacian of electron density of non-aromatic C—C bond ranges from -13.66/-10.05 eÅ⁻⁵ to -16.70/-11.42 eÅ⁻⁵. Among all aromatic C—C bonds, the Laplacian of electron density $\nabla^2 \rho_{bcp}$ (*r*) of C24—C25 is highest, -21.80/-15.98 eÅ⁻⁵ that shows the charges at this bond are highly concentrated. In co-crystal, the carbonyl group C=O have relatively high value of Laplacian of electron density $\nabla^2 \rho_{bcp}$ (*r*) as compared to all other bonds, this high value depicts the accumulation of charge in the

carbonyl bond. The Laplacian of electron density $\nabla^2 \rho_{bcp}$ (*r*) of carbonyl bonds C=O bonds of both NA molecules (1 and 2) are quite different [C15=O12: -21.40/-25.16eÅ⁻⁵; C21=O13: -30.43/25.17eÅ⁻⁵].

Figure S8 (*a*): The relief maps of Laplacian of electron density using experimental structure factors data (a) GA1 molecule, (b) GA2 molecule, (c) NA1 molecule and (d) NA2 molecule.

Figure S8 (*b*): The relief maps of Laplacian of electron density using theoretical structure factors (a) GA1 molecule, (b) GA2 molecule, (c) NA1 molecule and (d) NA2 molecule.

Table S4: Topological properties of (3, -1) CPs on the intermolecular interactions: distances (Å), electron density (eÅ⁻³), Laplacian (eÅ⁻⁵), Hessian eigenvalues (eÅ⁻⁵), $\varepsilon =$ ellipticity, Gcp = Bond Kinetic energy Vcp= Bond Potential Energy (Haretee/Å³). The upper line in each pair gives the experimental values and the lower one the theoretical values.

		Interacting	<i>d</i> ₁₂	dlcp	d2cp	$\rho(rb)$	$\nabla^2 \rho(cp)$	Gcp	Vcp	<mark>8</mark>
	Interactions	species	(Å)	(Å)	(Å)	(e/Å ³)	(e/Å ⁵)	(Hartree/Å ³)	(Hartree/Å ³)	
1	C19—	NA1…GA1	2.341(1)	0.957(2)	1.405(1)	0.058(2)	1.040(2)	0.054	-0.034	0.015
	H19…O1 ⁱⁱⁱ		2.341	0.973	1.380	0.072(1)	1.115	0.054	-0.040	0.003
2		NA2…GA1	3.049(1)	1.610(1)	1.463(2)	0.057(1)	0.742(3)	0.040	-0.027	0.243
	C26…O2		3.049	1.627	1.461	0.051	0.730	0.040	-0.027	0.411
3		GA2…NA2	3.192(1)	1.641(2)	1.583(1)	0.056(2)	0.586(1)	0.034	-0.020	0.920
	C12…C24		3.192	1.639	1.568	0.048	0.571	0.034	-0.020	1.131
4	017—	O17water…	2.367(1)	0.942(2)	1.460(2)	0.053(3)	0.929(1)	0.047	-0.027	0.135
	H17A…O9	GA2	2.367	0.954	1.421	0.059	0.933	0.047	-0.034	0.059
5		NA2…GA1	3.085(1)	1.542(1)	1.546(1)	0.047(1)	0.657(3)	0.034	-0.020	0.637
	C25…O5		3.085	1.546	1.545	0.044	0.629	0.034	-0.020	0.567
6	C26—	NA2…GA1	2.413(1)	0.974(1)	1.456(2)	0.047(2)	0.904(2)	0.040	-0.027	0.095
	H26…O5 ⁱⁱⁱ		2.413	0.996	1.431	0.054	0.906	0.047	-0.034	0.005
7	O13…H20—	NA2…NA1	2.637(1)	1.566(1)	1.116(1)	0.046(2)	0.692(2)	0.034	-0.020	0.101
	C20		2.637	1.498	1.160	0.042	0.654	0.034	-0.020	0.150
8		GA1…NA1	3.243(1)	1.706(2)	1.581(1)	0.046(2)	0.516(1)	0.027	-0.020	0.706
	C4…C19		3.243	1.668	1.603	0.041	0.493	0.027	-0.020	1.131
9		GA1…GA1	3.207(1)	1.673(1)	1.556(2)	0.042(1)	0.560(1)	0.027	-0.020	1.284
	C6…O1		3.207	1.658	1.564	0.037	0.539	0.027	-0.020	1.131
1		NA1…NA2	3.332(1)	1.713(1)	1.650(1)	0.042(2)	0.485(1)	0.020	-0.013	0.442
0	C16…O14		3.332	1.735	1.635	0.035	0.460	0.020	-0.013	0684
1		GA1…NA2	3.195(1)	1.572(1)	1.624(2)	0.041(1)	0.547(2)	0.027	-0.020	0.649
1	O4…C24		3.195	1.575	1.622	0.036	0.518	0.027	-0.013	0.862
1	O9…H23—	GA2…NA2	2.554(1)	1.559(2)	1.066(1)	0.037(2)	0.654(1)	0.034	-0.020	1.267
2	C23		2.554	1.521	1.074	0.045	0.716	0.034	-0.020	0.899
1		NA1…GA2	3.252(1)	1.675(1)	1.591(2)	0.036(3)	0.490(1)	0.020	-0.013	1.077
3	C18…O9		3.252	1.671	1.590	0.033	0.470	0.020	0.013	1.499
1		NA2…NA1	3.304(1)	1.682(2)	1.636(1)	0.033(2)	0.410(1)	0.020	-0.013	0.042
4	C26…O11		3.304	1.677	1.639	0.028	0.385	0.020	-0.013	0.061
1		GA2…GA2	3.237(1)	1.594(1)	1.652(2)	0.032(3)	0.506(1)	0.020	-0.013	0.238
5	07…08		3.237	1.600	1.651	0.032	0.501	0.020	-0.013	0.477

1	015—	O15water…	2.856(1)	1.169(2)	1.701(1)	0.032(3)	0.482(1)	0.027	-0.013	1.417
6	H15B…O17	O17water	2.856	1.150	1.708	0.039	0.535	0.027	-0.013	1.517
1	O16…H24—	O16water…	2.598(1)	1.590(1)	1.041(2)	0.032(2)	0.614(1)	0.027	-0.013	0.259
7	C24	NA2	2.598	1.545	1.075	0.042	0.651	0.034	-0.020	0.208
1	C24—	NA2…GA2	2.640(1)	1.090(1)	1.559(1)	0.032(2)	0.551(1)	0.027	-0.013	0.106
8	H24…O7 ⁱ		2.640	1.104	1.537	0.042	0.625	0.027	-0.020	0.292
1	C14—	GA2…GA2	2.828(1)	1.240(2)	1.665(1)	0.030(2)	0.450(1)	0.020	-0.013	0.247
9	H14A…O10		2.828	1.243	1.631	0.034	0.472	0.020	-0.013	0.444
2	C3—	GA1…NA2	3.012(1)	1.408(1)	1.629(2)	0.030(1)	0.402(2)	0.020	-0.013	0.415
0	H3A…O14		3.012	1.400	1.628	0.029	0.400	0.020	-0.013	0.513
2	C20—	NA1…016	3.083(1)	1.376(2)	1.748(1)	0.029(3)	0.403(1)	0.020	-0.013	1.417
1	H20…O16	water	3.083	1.346	1.770	0.032	0.421	0.020	-0.013	0.817
2		GA2…GA2	3.228(1)	1.623(1)	1.605(1)	0.028(3)	0.459(1)	0.020	-0.013	0.324
2	O6…O10		3.228	1.608	1.623	0.026	0.446	0.020	-0.013	0.137
2		NA1…NA1	3.636(1)	1.793	1.865	0.024(1)	0.315	0.013	-0.007	1.078
3	N1…C20		3.636	1.783	1.881	0.023	0.311	0.013	-0.007	0.879
2		GA2…NA1	3.500(1)	1.703(1)	1.856(1)	0.023(3)	0.307(1)	0.013	-0.007	0.410
4	O8…C19		3.500	1.680	1.870	0.021	0.309	0.013	-0.007	0.449
2	C23—	NA2…017	3.068(1)	1.444(1)	1.688(1)	0.017(1)	0.267(1)	0.007	-0.007	0.756
5	H23…O17	water	3.068	1.397	1.686	0.020	0.294	0.013	-0.007	0.302
2		GA2…NA2	2.249(1)	1.130(1)	1.162(1)	0.014(1)	0.390(2)	0.013	-0.007	0.079
6	H10A…H25		2.249	1.113	1.141	0.029	0.458	0.020	-0.013	0.011
2		NA1…NA1	2.898(1)	1.467(1)	1.475(1)	0.012(2)	0.171(1)	0.007	-0.005	0.303
7	H17…H18		2.898	1.449	1.462	0.014	0.194	0.007	-0.047	0374
2	С7—	GA1…NA2	3.465(1)	1.526(1)	2.023(1)	0.004(2)	0.072(1)	0.003	-0.001	0.904
8	H7A…O14		3.465	1.546	1.928	0.005	0.084	0.003	-0.002	0.001

Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y+1, z; (iii) x, y-1, z-1; (iv) -x, -y+1, -z+1; (v) x+1, y-1, z; (vi) x+1, y, z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y+1, -z+2; (ix) -x+2, -y+1, -z+2; (x) x, y+1, z+1.

Table S5: Ellipticity (ϵ) of intermolecular H bonds. The upper line in each pair gives the experimental values and the lower one the theoretical values; the statistical errors are estimated based on ref 66.

	Interactions	Interacting	ε
	Interactions	species	
1		NA2 ···NA1	0.001
	014…H14—N1		0.003
2		NA2 ···NA1	0.010
	N2—H2…O11 ⁱ		0.006
3		O15water…GA1	0.046
	015…H1—01		0.005
4		NA1…GA2	0.122
	012···H8—08		0.007
5		GA1…GA2	0.066
	02…H10—O10		0.016
6		O16water…GA1	0.002
	O16…H3—O3		0.002
7		GA2…O16water	0.029
	07—H7…O16 ^{vi}		0.014
8		GA1…O17water	0.077
	04—H4…O17		0.003
9		O16water…O17	0.044
	016—H16A…O17 ^{iv}	water	0.010
10		O16water…NA2	0.173
	016—H16B…O13 ^{vii}		0.006
11	013···H9—09	NA2…GA2	0.162
			0.006
12		O15water…NA1	0.016
	015—H15A…O11 ^{ix}		0.032
13		O17water…GA2	0.163
	017—H17A…O10		0.006
14		GA1…O17water	0.149
	03…017		0.457
15		GA2…O15water	0.129
	06…H15B—O15		0.059
16		GA2···NA1	0.307
	08…H20—C20		0.269
17	05—H5…O11 ⁱⁱ	GA1…NA1	0.213

			0.016
18		NA1…GA1	0.057
	C17—H17…O4 ^v		0.038
19		O17water…GA2	0.181
	017—H17B06 ⁱ		0.048
20		NA1…O15water	0.015
	C18—H18…O15 ⁱⁱⁱ		0.004
21		NA2…NA1	0.016
	C25—H25…O12 ⁱ		0.026
22		O15water…GA2	0.099
	015—H15B…O10		0.028

Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y+1, z; (iii) x, y-1, z-1; (iv) -x, -y+1, -z+1; (v) x+1, y-1, z; (vi) x+1, y, z+1; (vii) - x+1, -y+1, -z+1; (viii) -x+1, -y+1, -z+2; (ix) -x+2, -y+1, -z+2; (x) x, y+1, z+1.

Bond ellipticity index

The bond ellipticity $[\varepsilon = \lambda_1/\lambda_2 - 1]$ is an index of the measure of cylindricity of the charge distribution and charge delocalization of an interaction⁷⁴. In the present study, the experimental ellipticity values of N—H···O hydrogen bonds range from 0.001 to 0.010 which indicate their cylindrical nature and localization of the charge. Similarly, for most of the O—H···O interactions the values are close to zero except for O8—H8···O12 and O5—H5···O11ⁱⁱ, being 0.122 and 0.213 respectively which indicate their non-cylindrical nature and delocalization of charge. These two hydrogen bonds are non-linear with their \angle D-H-A being 166.87° and 129.47° respectively. These two bonds also possess lower electrostatic energy-28(3) kJ/mol (Table 3), which shows weak nature of these interactions. For the C—H···O interactions, the ellipticity, is quite higher than previously mentioned strong interactions, ranging from 0.015 to 0.307 which shows that these interactions have an elliptical shape and are stretched. It can be concluded that ellipticity values close to zero possess the highest electrostatic interaction energies (Table 3) while those with higher ellipticity values possess lower electrostatic energies. Bond ellipticity is therefore can be a direct measure of the strength of an interaction. However, the precision and accuracy in the calculation of ellipticity for H bonds, especially for experimental data, is generally not considered reliable. One therefore remains cautious in believing ellipticity indices for H bonds.