Supporting Information

Structural cutting and recombining in a layered sodium dysprosium phosphonate: key roles of flexible pyrazinyl hydrazone molecular tools[†]

Xiao Sun,^a Peiqiong Chen,^a Yanan Liu,^a Hou-Ting Liu*^a and Haiquan Tian*^a

^a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China. E-mail: <u>tianhaiquan@lcu.edu.cn</u>, <u>liuhouting@lcu.edu.cn</u>

			Con	npound 1			
Dy1-O1	2.334(9)	Dy6…Na3	3.7346(1)	Dy5…Na3	3.7524(1)	Dy3…Na1	9.9315(3)
Dy1–O2	2.247(10)	Dy6…Na3	7.8328(3)	Dy5…Na1	7.3023(2)	Dy4…Na5	3.9729(1)
Dy1013	2.378(8)	Dy2–N5	3.1187(2)	Dy6…Na1	3.7841(1)	Dy4…Na3	9.4972(3)
Dy1019	2.493(8)	Dy3–O4	2.347(9)	Dy6…Na4	8.1641(3)	Dy5…Dy6	3.9638(1)
Dy1-O20	2.288(9)	Dy3–O5	2.274(10)	Dy4-N16	2.505(12)	Dy5…Na2	9.2912(3)
Dy1-022	2.303(9)	Dy3–O7	2.340(8)	Dy5-016	2.392(9)	Dy6…Na5	6.5693(2)
Dy1–N4	2.514(13)	Dy3026	2.271(9)	Dy5-021	2.343(10)	Na1…Na3	7.3825(3)
Dy1-N17	2.532(11)	Dy3027	2.462(8)	Dy5-023	2.460(9)	Na1…Na2	9.0417(3)
Dy201	2.828(9)	Dy3028	2.342(10)	Dy5–O24	2.461(9)	Na2…Na4	7.0537(2)
Dy2–O4	2.758(9)	Dy3–N8	2.561(10)	Dy5-030	2.196(9)	Na3…Na4	9.5088(3)
Dy2O20	3.1070(1)	Dy3–N9	2.596(11)	Dy5-033	2.366(10)	Na1…Na3	9.0770(3)
Dy2022	2.9914(1)	Dy4–O7	2.484(8)	Dy5-N21	2.598(13)	Na1…Na5	9.4702(3)
Dy2023	2.8837(2)	Dy4–O8	2.250(10)	Dy6013	2.487(8)	Na3…Na5	6.4419(2)
Dy2026	3.0751(3)	Dy4-010	2.393(9)	Dy6014	2.276(8)	Na2…Na5	7.1192(2)
Dy2028	2.8712(1)	Dy4-011	2.259(10)	Dy6016	2.416(7)	Na4…Na5	3.0644(1)
Dy2–N1	3.1168(2)	Dy4–O27	2.380(8)	Dy6017	2.239(10)	Dy1-O1-Dy2	103.2(3)
Na1–O2	2.415(11)	Dy4029	2.298(9)	Dy6019	2.323(8)	Dy1-O2-Na1	105.1(4)
Na1–O3	2.375(13)	Dy4-N12	2.570(11)	Dy6024	2.348(8)	Dy3–O7–Na2	99.9(3)
Na1–O13	2.506(11)	Na3036	2.378(19)	Dy6-N20	2.557(13)	Dy4-010-Na4	89.2(4)
Nal-O17	2.319(11)	Na4–O8	2.397(12)	Dy6-N24	2.556(11)	Dy4-011-Na2	108.7(4)
Na1–O18	2.519(12)	Na4010	2.490(13)	P2023	1.524(10)	Dy6-013-Na1	98.6(3)
Na1–O34	2.292(12)	Na4029	2.453(11)	P2024	1.531(9)	Dy5-O16-Na3	100.5(4)
Na2–O5	2.380(11)	Na4-O31	2.600(15)	P2-C89	1.789(15)	Dy1019Dy6	114.0(4)
Na206	2.335(13)	Na4037	2.69(3)	P3O25	1.459(10)	Dy3027Dy4	111.6(3)
Na2–O7	2.535(10)	Na5010	2.291(12)	P3O26	1.555(11)	Dy5–O31–Na5	97.0(5)
Na2011	2.299(11)	Na5–O23	2.302(12)	P3027	1.540(8)	Dy2-O4-Dy3	102.8(3)
Na2012	2.400(13)	Na5–O25	2.543(13)	P3C99	1.878(19)	Dy4–O7–Na2	95.1(3)
Na2-O35	2.295(12)	Na5-O31	2.127(14)	P4028	1.521(11)	Dy4010Na5	116.0(4)
Na3014	2.401(11)	Na5-N13	2.500(16)	P4029	1.516(9)	Dy1013Dy6	112.3(3)
Na3015	2.235(12)	P1019	1.545(10)	P4030	1.526(10)	Dy6014Na3	105.9(4)
Na3016	2.488(9)	P1O20	1.522(11)	P4C109	1.809(15)	Dy6016Na3	99.2(3)
Na3–O33	2.238(14)	P1O21	1.502(10)	P5031	1.540(13)	Dy5–O23–Na5	90.6(3)
Dy1…Dy6	4.0403(1)	P1C79	1.785(15)	P5032	1.458(14)	Dy4029Na4	92.3(4)
Dy1…Na5	6.8952(2)	P2022	1.514(9)	P5033	1.548(12)	Na4-O31-Na5	80.2(5)
Dy1…Na4	9.3144(3)	Dy1…Dy2	4.0562(1)	P5-C119	1.856(18)	Dy3–O5–Na2	106.7(4)
Dy2…Dy5	4.2016(1)	Dy1…Na3	7.3664(3)	Dy1…Na1	3.7016(1)	Dy4–O8–Na4	95.0(4)
Dy2…Dy4	6.1982(2)	Dy1…Na2	9.9431(3)	Dy1…Dy5	5.4053(2)	Na4-O10-Na5	79.6(4)
Dy2…Na2	7.5940(2)	Dy2…Na5	4.2297(1)	Dy1…Dy3	8.0166(2)	Dy1-O13-Na1	98.6(3)
Dy3…Dy4	4.0040(1)	Dy2…Na4	6.5205(2)	Dy2…Dy3	3.9970(1)	Dy5-O16-Dy6	111.1(3)
Dy3…Dy5	6.6637(2)	Dy2…Na3	7.7451(2)	Dy2…Dy6	6.0670(2)	Dy6-O17-Na1	112.2(5)
Dy4…Na4	3.4268(1)	Dy3…Na5	5.1605(2)	Dy2…Na1	7.5794(2)	Dy5-O24-Dy6	111.0(3)
Dy4…Dy5	6.3877(2)	Dy3…Dy6	9.7190(3)	Dy3…Na2	3.7341(1)	Dy5-O31-Na4	124.3(5)
Dy5…Na5	3.3855(1)	Dy4…Na2	3.7043(1)	Dy3…Na4	6.3243(2)	Dy5-O33-Na3	109.1(5)
Dr.5Na4	4,4111(1)	Dv4…Na4	9.4243(3)				

 Table S1. Selected bond lengths (Å) and angles (°) for 1.

		2		0 ()			
			Con	npound 2			
Dy1-O20	2.293(13)	Dy4046	2.405(15)	P3-O39	1.522(16)	Na1-O43	2.60(2)
Dy1-O22	2.327(13)	Dy4047	2.383(13)	P3-O40	1.49(2)	Na1-O49	2.39(3)
Dy1-027	2.314(17)	Dy5017	2.33(2)	P3-C22	1.87(2)	Na2–O7	2.37(2)
Dy1–O28	2.290(16)	Dy5018	2.280(14)	P4022	1.522(15)	Na208	2.513(17)
Dy1-O44	2.421(16)	Dy5–O28	2.465(15)	P4023	1.484(17)	Na2-O29	2.493(18)
Dy1-O46	2.332(14)	Dy5029	2.408(14)	P4024	1.528(14)	Na2-O31	2.711(18)
Dy1–O47	2.334(14)	Dy5-O31	2.237(14)	P4-C32	1.810(16)	Na2-O33	2.520(19)
Dy209	2.456(15)	Dy5036	2.259(14)	P5-O35	1.533(15)	Na2-O34	2.38(3)
Dy2-O10	2.267(17)	Dy5047	2.431(14)	P5-O36	1.510(17)	Na2–N6b	2.72(2)
Dy2-O12	2.382(17)	Dy6–O3	2.470(17)	P5-O37	1.479(17)	Na3–O4	2.41(2)
Dy2-O24	2.290(14)	Dy6–O5	2.264(17)	Na3–N2d	2.67(2)	Na4015	2.64(2)
Dy2-O39	2.230(14)	Dy606	2.40(2)	Na4010	2.430(17)	Na4023	2.692(17)
Dy2048	2.472(12)	Dy6019	2.280(15)	Na4011	2.36(2)	Na4024	2.594(19)
Dy2–N1	2.601(16)	Dy6021	2.473(15)	Na4040	2.49(2)	Dy7-O15-Na4	86.6(7)
Dy2–N8	2.501(17)	Dy6037	2.247(14)	Dy1…Dy2	5.7425(13)	Dy6-O6-Dy8	104.2(7)
Dy308	2.230(17)	Dy6-N11	2.645(19)	Dy1…Dy3	5.7731(13)	Dy6-O19-Na3	96.2(6)
Dy309	2.370(16)	Dy6-N15	2.49(2)	Dy1…Dy4	3.8799(13)	Dy6-O21-Dy8	98.7(4)
Dy3012	2.433(15)	Dy7014	2.66(2)	Dy1…Dy5	3.8094(13)	Dy5-O36-Na3	96.6(6)
Dy3-O30	2.258(13)	Dy7015	2.43(2)	Dy1…Dy6	5.8121(14)	Dy7-O40-Na4	94.0(6)
Dy3-O33	2.310(15)	Dy7–O23	2.327(14)	Dy1…Dy7	3.8596(14)	Dy2-O9-Dy3	103.2(5)
Dy3048	2.472(12)	Dy7026	2.426(16)	Dy1…Dy8	5.8359(14)	Dy2-O10-Na4	99.1(6)
Dy3–N4	2.472(17)	Dy7–O27	2.480(15)	Dy2…Dy3	3.7839(13)	Dy2-O12-Dy3	103.6(5)
Dy3–N5	2.609(17)	Dy7–O40	2.271(16)	Dy2…Dy4	5.6291(13)	Dy7–O14–Na1	88.2(8)
Dy4032	2.274(14)	Dy7043	2.254(16)	Dy2…Dy5	7.3551(18)	Dy6-O5-Na3	98.6(6)
Dy4-035	2.312(16)	Dy7046	2.494(17)	Dy2…Dy6	9.3316(16)	Dy5–O18–Na3	94.9(6)
Dy4–O38	2.273(16)	Dy8–O2	2.22(2)	Dy2…Dy7	5.4327(13)	Dy3-O33-Na2	96.0(6)
Dy4-041	2.257(16)	Dy8–O3	2.344(16)	Dy3…Dy4	6.0339(13)	Dy7-O23-Na4	87.7(5)
Dy4-045	2.347(16)	Dy8–O6	2.39(2)	Dy3…Dy5	5.4486(14)	Dy2-O24-Na4	94.0(5)
Dy8021	2.505(16)	P6C52	1.839(16)	Dy3…Dy7	7.6393(18)	Dy7–O26–Na1	96.4(7)
Dy8–O25	2.268(17)	P7041	1.54(2)	Dy4…Dy5	4.2939(13)	Dy1-O27-Dy7	107.2(5)
Dy8042	2.217(17)	P7–O42	1.506(17)	Dy4…Dy6	5.6412(14)	Dy1-O28-Dy5	106.4(5)
Dy8–N9	2.43(2)	P7–O43	1.48(2)	Dy4…Dy7	4.3789(13)	Dy5-O29-Na2	103.6(6)
Dy8–N12	2.62(3)	P7-C62	1.767(18)	Dy4…Dy8	5.9576(14)	Dy1-O46-Dy7	106.2(5)
P1-O31	1.498(15)	P8025	1.490(15)	Dy5…Dy6	5.4598(14)	Dy5-O31-Na2	101.8(6)
Р1-032	1.540(19)	P8026	1.553(19)	Dy5…Dy7	7.1309(18)	Dy1-O47-Dy5	106.1(5)
P1-O33	1.495(14)	P8027	1.543(16)	Dy5…Dy8	7.6029(18)	Dy8-O42-Na1	95.2(7)
P1C1	1.803(19)	P8C72	1.843(18)	Dy6…Dy7	7.3901(18)	Dy7-O43-Na1	96.7(7)
P2028	1.568(16)	Na1–O1	2.44(3)	Dy6…Dy8	3.7774(18)	Dy1-O46-Dy4	110.0(6)
P2029	1.521(18)	Na1–O2	2.48(2)	Dy7…Dy8	5.3935(16)	Dy4046Dy7	126.7(6)
P2O30	1.500(14)	Na1–O14	2.56(2)	Dy308C93	137.9(16)	Dy1-047-Dy4	110.7(6)
P2C11	1.817(17)	Na1–O26	2.44(2)	Dy8–O2–Na1	100.8(8)	Dy4-O47-Dy5	126.3(6)
P3–O38	1.515(16)	Na1-042	2.68(2)	Dy6–O3–Dy8	103.4(6)	Dy2-O48-Dy3	99.9(3)

Table S2. Selected bond lengths (Å) and angles (°) for 2.

Table S3. H [•]	vdrogen	bonds	in	1.
--------------------------	---------	-------	----	----

Compound 1								
D–H…A	d(D-H) (Å)	d(H…A) (Å)	$d(D \cdots A)$ (Å)	<(DHA) (°)				
O34–H34b…N10	0.8500	2.1500	2.81(2)	134.00				
O34–H34c…N2	0.8500	2.5200	2.944(16)	112.00				
O35–H35b…N18	0.8500	2.5600	2.851(19)	101.00				
O35–H35c…N6	0.8500	2.1700	2.912(17)	145.00				
O37–H37b…O32	0.8500	2.3000	2.77(3)	115.00				
С1–Н1…О26	0.9300	2.3800	3.081(19)	132.00				
C129–H12a…O36	0.9600	1.9600	2.78(5)	142.00				
C129–H12c…O32	0.9600	2.0200	2.71(5)	126.00				
C14–H14…O20	0.9300	2.3100	3.01(2)	132.00				
C42–H42…N15	0.9300	2.4400	2.77(2)	101.00				
C55–H55…N19	0.9300	2.4900	2.80(2)	100.00				
C80–H80…O21	0.9300	2.4900	2.899(19)	107.00				
C82–H82…N15	0.9300	2.6100	3.36(3)	139.00				
С87–Н87…О19	0.9300	2.4400	3.016(19)	120.00				
С90–Н90…О24	0.9300	2.5200	2.95(2)	108.00				
С97–Н97…О22	0.9300	2.2700	2.96(2)	131.00				
C100–H100····O27	0.9300	2.3800	2.87(2)	112.00				
С110-Н110…О29	0.9300	2.5500	2.96(2)	107.00				
С117–Н117…О28	0.9300	2.3700	3.07(2)	132.00				
С120-Н120…О33	0.9300	2.5200	2.94(2)	108.00				
C127–H127…O32	0.9300	2.3700	3.04(3)	130.00				

Symmetry codes: (a) x, y, -1+z; (b) -x, -y, -z; (c) 1+x, y, z.

Table 54. Hydrogen bonds in 2	Ta	ble	S4 .	Hydrogen	bonds	in 2
-------------------------------	----	-----	-------------	----------	-------	-------------

Compound 2								
D–H…A	d(D-H) (Å)	$d(H\cdots A)(Å)$	$d(D \cdots A)$ (Å)	<(DHA) (°)				
O13–H13b…N16	0.8500	2.2600	2.82(3)	124.00				
O34–H34a…O17	0.8500	2.2200	2.78(3)	124.00				
С2-Н2…О31	0.9300	2.4200	2.86(2)	109.00				
С12-Н12…О30	0.9300	2.4600	2.89(2)	108.00				
C120–H12a…O16	0.9600	2.4000	3.21(4)	141.00				
С17–Н17…О29	0.9300	2.2500	3.00(3)	137.00				
С23–Н23…О39	0.9300	2.5400	2.92(3)	104.00				
C28–H28…O40	0.9300	2.2800	3.05(3)	140.00				
С33–Н33…О23	0.9300	2.3600	2.84(2)	112.00				
C40–H40…O9	0.9300	2.6000	3.36(2)	139.00				
C43–H43…O36	0.9300	2.4500	2.86(3)	107.00				
С50–Н50…О37	0.9300	2.3900	3.13(3)	136.00				
С53–Н53…О18	0.9300	2.4800	2.92(2)	109.00				
С60–Н60…О20	0.9300	2.5500	3.18(2)	125.00				
С63–Н63…О43	0.9300	2.4000	2.85(3)	110.00				
С73–Н73…О27	0.9300	2.5100	2.96(2)	110.00				
C8–H80····O25	0.9300	2.4000	3.01(3)	123.00				
С82–Н82…О10	0.9300	2.4900	3.07(2)	121.00				
C94–H94a…O34	0.9600	2.3900	3.15(4)	135.00				
С96–Н96…О33	0.9300	2.5400	3.27(3)	136.00				
С121–Н121…О5	0.9300	2.5800	3.14(3)	119.00				

Symmetry codes: (a) -x, 2-y, -z; (b) x, -1+y, z.

	Dy										
Geometry	(CN = 8)	Dy1	Dy3	Dy4	Dy5	Dy6		Geometry (CI	N = 10)		Dy2
TI	DD-8	3.061	2.881	3.125	2.712	2.573			PARP-10		3.431
ВТ	PR-8	3.110	3.090	2.123	2.679	2.472			SDD-10		5.613
JS	SD-8	3.485	3.538	3.282	5.988	2.319			HD-10		6.591
JB	TPR-8	4.248	4.312	2.670	3.571	3.149			TD-10		7.416
SA	APR-8	5.341	4.772	3.942	4.377	5.007			JMBIC-10		7.547
JG	BF-8	9.787	9.786	10.082	12.443	9.223			JBCCU-10		9.655
C	CU-8	11.616	12.003	9.334	10.367	12.614		PPR-10		9.834	
Т	T-8	12.189	12.582	9.774	10.998	13.262			JSPC-10		12.936
HE	3PY-8	12.885	12.723	12.507	13.921	14.016			JBCSAPR-10		13.388
ET	BPY-8	21.041	21.636	20.191	21.739	20.115			JATDI-10		14.600
JET	BPY-8	25.982	26.470	24.577	24.200	24.309			OBPY-10		15.740
Н	PY-8	24.390	25.016	24.114	21.173	24.088			EPY-10		24.156
C)P-8	31.937	30.971	31.950	34.252	32.016			DP-10		25.993
Na											
Geome	try (CN = 6)	Na1	Na2	Na5	Geometry	(CN =5)		Na3	Geometry (C	CN = 7)	Na4
]	HP-6	26.359	27.495	34.288	PP-:	5		18.038	HP-7		21.108
F	PPY-6	12.386	5 12.507	16.956	vOC	-5		5.122	HPY-7		15.043
	OC-6	8.447	8.638	7.886	ТВРҮ	/-5		8.825	PBPY-	7	7.626
1	TPR-6	8.871	7.109	8.880	SPY-	-5		5.402 COC-7		7	7.270
J	PPY-6	15.606	5 15.995	20.965	JTBP	Y-5		11.374	CTPR-7		4.875
									JPBPY	-7	10.479
									JETPY	-7	15.860
Lable	Shape	Lable	Shape	Lable	Sh	ape		Lable	Shape	Lable	Shape
PP-5	Pentagon (D _{5h})	JPPY-6	Johnson pentagona pyramid (C _{5V})	HPY-8	Heptagonal	pyramid (C _{7v})		JSD-8	Snub diphenoid J84 (D _{2d})	JMBIC-10	Metabidiminished icosahedron (J62) (C _{2v})
vOC-5	Vacant octahedron‡ (Johnson square pyramid, J1) (C _{4v})	HP-7	Heptagon	HBPY-8	Hexagonal b	ipyramid (D _{6h})		TT-8	Triakis tetrahedron (T _d)	JATDI-10	Augmented tridiminished icosahedron (J64) (C _{3v})
TBPY-5	Trigonal bipyramid (D _{3h})	HPY-7	Hexagonal pyramic (C _{6v})	CU-8	Cub	e (O _h)		DP-10	Decagon (D _{10h})	JSPC-10	Sphenocorona (J87) (C _{2v})
SPY-5	Square pyramid [§] (C _{4v})	PBPY-7	Pentagonal bipyram (D _{5h})	id SAPR-8	Square ant	iprism (D _{4d})		EPY-10	Enneagonal pyramid (C _{9v})	SDD-10	Staggered dodecahedron (2:6:2) # (D ₂)
JTBPY-5	Johnson trigonal bipyramid (J12) (D _{3b})	COC-7	Capped octahedror (C _{3v})	TDD-8	Triangular dod	ecahedron (D _{2d}))	OBPY-10	Octagonal bipyramid (D_{8h})	TD-10	Tetradecahedron (2:6:2) (C _{3v})
HP-6	Hexagon (D _{6h})	CTPR-7	Capped trigonal pris (C _{2v})	m JGBF-8	Johnson gyrobifa	astigium J26 (D	2d)	PPR-10	Pentagonal prism (D _{5h})	HD-10	Hexadecahedron (2:6:2, or 1:4:4:1) (D _{4h})
PPY-6	Pentagonal pyramid (C _{5V})	JPBPY-7	Johnson pentagona bipyramid J13 (D _{5h}	JETBPY-8	Johnson elong bipyrami	gated triangular d J14 (D _{3h})		PAPR-10	Pentagonal antiprism (D _{5d})		
OC-6	Octahedron (O _h)	JETPY-7	Elongated triangula pyramid J7 (C _{3v})	r JBTPR-8	Biaugmented trigo	onal prism J50 (C _{2v})	JBCCU-10	Bicapped cube (Elongated square bipyramid J15) (D _{4h})		
TPR-6	Trigonal prism (D _{3h})	OP-8	Octagon (D _{8h})	BTPR-8	Biaugmented tri	gonal prism (C ₂	ev)	JBCSAPR-10	Bicapped square antiprism (Gyroelongated square bipyramid 117) (D)		

Table S5. Dy^{III} and Na^I geometry analysis of 1 by SHAPE 2.1 software.

					Dy						
Geometry ((CN = 7)	Dy1	Dy4	Dy5	Geometry (CN = 8) Dy2	Dy3	Dy6	1	Dy7	Dy8
Н	IP-7	35.140	33.262	30.045	OP-8	32.863	34.037	32.526	29	9.539	32.257
н	PY-7	19.787	23.957	22.079	HPY-8	23.889	23.451	23.807	20).769	23.056
PB	SPY-7	4.526	0.358	2.156	HBPY-8	15.735	15.840	15.359	10	0.740	15.858
C	DC-7	2.285	7.096	3.866	CU-8	12.397	12.223	12.212	12	2.137	11.049
СТ	PR-7	1.462	5.262	2.228	SAPR-8	3.183	3.668	3.146	6	.316	3.462
JPI	BPY-7	8.185	3.336	4.986	TDD-8	2.379	2.515	2.184	5	.059	1.990
JET	ГРҮ-7	20.286	22.968	20.255	JGBF-8	14.038	13.728	13.488	7	.332	13.413
					JETBPY-8	28.107	28.080	28.195	20).574	27.329
					JBTPR-8	2.721	3.138	2.720	3	.891	2.892
					BTPR-8	2.195	2.541	2.135	3	.892	2.424
					JSD-8	4.441	4.662	4.161	4	.432	4.067
					TT-8	13.141	13.012	12.903	12	2.695	11.606
					ETBPY-8	24.918 24.641 24.854		17	7.863	23.820	
	Na										
Geometry	(CN = 7)		Na1	1	Na2		Na3			Na4	
]	HP-7		30.889	31	.509		32.008			29.778	1
Н	IPY-7		15.241	21	.702		21.498			15.571	
P	BPY-7		6.061	2	.851		2.381			4.913	
<u> </u>	COC-7		5.580	5	.065		5.748			5.567	
C	TPR-7		4.625	3	.240		4.420			4.760	
JP	BPY-7		8.505	7	.280		7.153			7.080	
JE	TPY-7		16.747	19	0.396		20.232			16.235	
Lable	Shape	Lable	Shape	Lable	Shape	2	Lable		Shape	Lable	Shape
HP-7	Heptagon	CTPR-7	Capped trigonal prism (C _{2v})	OP-8	Octagon ((D _{8h})	SAPR-8	Squar	re antiprism (D _{4d})	JBTPR-8	Biaugmented trigonal prism J50 (C _{2v})
HPY-7	Hexagonal pyramid (C _{6v})	JPBPY-7	Johnson pentagonal bipyramid J13 (D _{5h})	HPY-8	Heptagonal pyra	amid (C _{7v})	TDD-8	Tr dodeca	iangular hedron (D _{2d})	BTPR-8	Biaugmented trigonal prism (C _{2v})
PBPY-7	Pentagonal bipyramid (D _{5h})	JETPY-7	Elongated triangular pyramid J7 (C _{3v})	HBPY-8	Hexagonal bipyr	ramid (D _{6h})	JGBF-8	gyrobif	onnson fastigium J26 (D _{2d})	JSD-8	Snub diphenoid J84 (D _{2d})
COC-7	Capped octahedron (C _{3v})			CU-8	Cube (C	D _h)	JETBPY-8	Johnso tri bipyrar	on elongated angular nid J14 (D _{3h})	TT-8	Triakis tetrahedron (T _d)

Table S6. Dy^{III} and Na^I geometry analysis of **2** by SHAPE 2.1 software.

				Ln(z	ζ"/χ')				
<i>T</i> (k) <i>V</i> (Hz)	1.8	2.0	2.3	2.6	2.9	3.2	3.5	3.8	4.1
1.000(5)	-5.049(9)	-5.183(5)	-5.263(1)	-5.337(5)	-5.392(8)	-5.429(8)	-5.483(2)	-5.521(4)	-5.546(1)
17.193(1)	-4.972(1)	-5.095(3)	-5.196(1)	-5.256(7)	-5.324(5)	-5.382(7)	-5.396(8)	-5.457(1)	-5.512(3)
21.046(6)	-4.851(4)	-4.989(2)	-5.090(6)	-5.162(8)	-5.203(7)	-5.279(4)	-5.314(1)	-5.356(4)	-5.371(2)
25.807(6)	-4.730(7)	-4.854(3)	-4.936(5)	-5.014(4)	-5.075(2)	-5.123(9)	-5.166(7)	-5.196(3)	-5.239(1)
31.624(4)	-4.608(9)	-4.728(7)	-4.809(6)	-4.876(2)	-4.939(8)	-4.979(1)	-5.010(6)	-5.067(2)	-5.096(8)
38.752(4)	-4.507(2)	-4.621(7)	-4.702(2)	-4.782(4)	-4.834(2)	-4.880(2)	-4.931(8)	-4.962(2)	-5.001(1)
47.498(1)	-4.436(7)	-4.549(9)	-4.643(6)	-4.717(8)	-4.766(5)	-4.811(1)	-4.869(6)	-4.899(5)	-4.927(1)
58.128(7)	-4.369(8)	-4.492(1)	-4.581(4)	-4.648(8)	-4.722(1)	-4.768(1)	-4.807(1)	-4.855(6)	-4.898(9)
71.178(1)	-4.302(2)	-4.423(6)	-4.513(1)	-4.589(7)	-4.649(4)	-4.703(1)	-4.754(1)	-4.792(1)	-4.839(1)
87.349(1)	-4.202(2)	-4.326(9)	-4.424(5)	-4.501(9)	-4.566(9)	-4.617(2)	-4.658(9)	-4.703(6)	-4.743(1)
107.079(2)	-4.095(6)	-4.216(8)	-4.314(4)	-4.390(6)	-4.452(5)	-4.509(4)	-4.549(1)	-4.591(1)	-4.626(8)
130.906(4)	-3.978(2)	-4.103(3)	-4.192(2)	-4.263(9)	-4.330(1)	-4.381(1)	-4.428(1)	-4.464(9)	-4.505(9)
160.618(8)	-3.860(7)	-3.982(1)	-4.070(7)	-4.138(5)	-4.201(8)	-4.257(1)	-4.292(9)	-4.333(2)	-4.366(2)
196.887(6)	-3.748(5)	-3.872(1)	-3.961(6)	-4.026(7)	-4.088(7)	-4.136(9)	-4.178(1)	-4.214(1)	-4.249(1)
241.126(5)	-3.647(1)	-3.772(4)	-3.856(4)	-3.923(8)	-3.985(4)	-4.037(3)	-4.074(5)	-4.110(4)	-4.141(7)
295.480(3)	-3.553(4)	-3.675(3)	-3.766(6)	-3.845(6)	-3.897(8)	-3.950(1)	-3.983(1)	-4.020(9)	-4.056(1)
362.360(8)	-3.462(8)	-3.586(2)	-3.683(6)	-3.753(9)	-3.809(9)	-3.864(8)	-3.906(7)	-3.938(2)	-3.972(6)
443.892(1)	-3.375(4)	-3.504(1)	-3.595(4)	-3.679(1)	-3.731(5)	-3.785(9)	-3.826(8)	-3.861(6)	-3.896(6)
544.045(9)	-3.287(3)	-3.422(8)	-3.518(3)	-3.594(6)	-3.658(5)	-3.708(4)	-3.750(7)	-3.784(9)	-3.817(2)
666.595(5)	-3.203(8)	-3.338(6)	-3.435(2)	-3.514(5)	-3.574(2)	-3.620(6)	-3.662(6)	-3.697(1)	-3.734(1)
815.501(1)	-3.129(4)	-3.266(1)	-3.366(5)	-3.449(9)	-3.513(2)	-3.567(5)	-3.607(2)	-3.635(9)	-3.682(1)
999.040(9)	-3.076(2)	-3.219(6)	-3.322(1)	-3.407(1)	-3.469(2)	-3.522(1)	-3.564(6)	-3.601(6)	-3.632(4)

Table S7. Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under zero *dc* field for **1** (1.0-1000 Hz).

T	ℋт	Xs	α	τ / s
1.9	63.710(2)	36.288(3)	0.320(9)	1.995(9)E-5
2.5	60.250(7)	39.749(2)	0.299(7)	1.862(1)E-5
3.0	58.435(3)	41.564(6)	0.291(9)	1.707(1)E-5
3.5	56.968(1)	43.031(9)	0.282(9)	1.621(3)E-5
4.0	55.808(6)	44.191(3)	0.271(9)	1.586(6)E-5
4.5	55.190(7)	44.809(2)	0.287(6)	1.484(7)E-5
5.0	54.155(5)	45.844(4)	0.255(3)	1.416(2)E-5
7.0	51.908(5)	47.091(4)	0.242(7)	1.216(9)E-5
8.0	50.385(1)	48.614(8)	0.221(1)	1.081(2)E-5
9.0	48.834(5)	50.165(4)	0.206(8)	9.622(2)E-6
10.0	46.148(8)	52.148(8)	0.191(3)	9.046(1)E-6
11.0	44.690(7)	53.690(7)	0.179(1)	8.377(6)E-6
12.0	42.359(1)	54.640(9)	0.169(1)	7.375(1)E-6
13.0	40.385(4)	56.034(7)	0.151(6)	6.238(5)E-6
14.0	38.680(8)	58.059(2)	0.144(9)	5.411(7)E-6
15.0	36.561(5)	60.084(7)	0.128(4)	4.058(1)E-6
16.0	34.768(2)	61.809(2)	0.118(6)	3.112(8)E-6
17.0	32.757(3)	63.127(9)	0.106(9)	2.861(2)E-6
18.0	31.647(3)	64.182(4)	0.083(3)	2.346(1)E-6
19.0	30.013(6)	65.187(1)	0.073(6)	2.088(1)E-6
20.0	28.761(1)	66.152(8)	0.059(6)	1.954(4)E-6

Table S8. Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under zero *dc* field for **1** (10-10000 Hz).

T	ℋт	Xs	α	τ / s
1.8	38.146(3)	23.853(6)	0.229(1)	1.185(1)E-4
2.0	36.780(1)	25.219(9)	0.219(1)	1.051(1)E-4
2.3	35.837(2)	26.162(8)	0.212(4)	8.950(7)E-5
2.6	35.139(7)	26.860(2)	0.207(1)	8.064(9)E-5
2.9	34.564(2)	27.435(7)	0.200(2)	7.532(4)E-5
3.2	34.238(8)	27.761(1)	0.202(9)	6.614(1)E-5
3.5	33.865(2)	28.134(7)	0.199(3)	6.272(9)E-5
4	33.533(6)	28.466(3)	0.194(3)	6.058(3)E-5
4.3	33.319(9)	28.680(1)	0.194(2)	5.617(5)E-5
4.6	32.927(5)	29.072(4)	0.189(8)	5.269(7)E-5
4.9	32.787(1)	29.212(9)	0.197(2)	4.491(1)E-5
5.5	32.600(3)	29.399(7)	0.199(5)	3.885(4)E-5
6.0	32.424(7)	29.575(2)	0.199(1)	3.422(4)E-5
6.5	32.239(1)	29.760(8)	0.196(5)	2.876(4)E-5
7.0	32.516(1)	29.483(9)	0.213(8)	2.222(1)E-5
7.5	32.206(6)	29.793(3)	0.198(3)	1.735(6)E-5
8.0	32.308(8)	29.691(1)	0.204(5)	1.397(2)E-5
8.5	32.316(6)	29.683(3)	0.203(3)	1.164(6)E-5
9.0	32.234(5)	29.765(4)	0.189(3)	9.352(8)E-6
10.0	31.719(7)	29.480(2)	0.126(5)	7.063(4)E-6
11.0	31.558(7)	29.241(2)	0.167(9)	6.014(5)E-6
12.0	31.492(5)	30.507(4)	0.099(9)	5.079(5)E-6
13.0	31.421(5)	30.578(4)	0.083(8)	4.659(6)E-6
14.0	35.771(4)	26.228(5)	0.115(3)	4.026(2)E-6
15.0	35.687(8)	26.312(1)	0.102(3)	3.530(7)E-6
16.0	35.783(5)	26.216(4)	0.071(9)	3.005(9)E-6
17.0	35.672(7)	26.327(2)	0.067(7)	2.665(2)E-6
18.0	35.457(1)	26.542(9)	0.076(6)	2.310(7)E-6
19.0	35.322(8)	26.677(2)	0.080(4)	2.036(1)E-6
20.0	35.733(3)	26.266(6)	0.038(5)	1.813(3)E-6

Table S9. Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under zero *dc* field for **2** (1.0-1000 Hz).

T	ℋт	Xs	α	τ / s
1.9	69.004(4)	30.995(5)	0.312(1)	5.847(2)E-5
2.5	63.456(8)	36.543(1)	0.293(1)	3.911(3)E-5
3.0	60.665(1)	39.334(8)	0.283(7)	3.129(7)E-5
3.5	58.692(2)	41.307(7)	0.277(7)	2.649(7)E-5
4.0	57.146(2)	42.853(7)	0.265(1)	2.325(4)E-5
4.5	56.006(3)	43.993(7)	0.259(1)	2.049(3)E-5
5.0	55.230(3)	44.769(6)	0.266(1)	1.736(5)E-5
7.0	54.071(3)	45.928(6)	0.278(1)	1.218(6)E-5
8.0	53.060(1)	46.939(8)	0.268(4)	9.450(6)E-6
9.0	52.130(6)	47.869(3)	0.240(6)	8.342(4)E-6
10.0	51.584(2)	48.415(7)	0.234(2)	7.528(6)E-6
11.0	51.037(1)	48.962(9)	0.193(2)	6.331(5)E-6
12.0	51.693(8)	48.306(1)	0.312(6)	5.252(4)E-6
13.0	50.957(3)	49.042(6)	0.263(9)	3.874(5)E-6
14.0	51.494(7)	48.505(2)	0.289(5)	2.879(3)E-7
15.0	50.421(4)	49.578(5)	0.192(1)	2.429(4)E-6
16.0	50.275(2)	49.724(7)	0.192(9)	1.831(6)E-6
17.0	50.347(9)	49.652(1)	0.408(6)	1.360(2)E-6
18.0	50.309(7)	49.690(2)	0.669(5)	1.005(1)E-6
19.0	50.099(9)	49.900(1)	0.210(3)	8.169(1)E-7
20.0	50.052(5)	49.947(4)	0.193(3)	6.166(5)E-7

Table S10. Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data under zero *dc* field for **2** (10-10000 Hz).

Figure S1. Infrared spectra of 1 (left) and 2 (right).

Figure S2. TG analyses of 1 (left) and 2 (right).

Figure S3. Left: the powder XRD patterns for compound 1. Right: the black circles are for the observed data. The red solid line is for the calculated data. The grey solid curve is for the difference. The vertical bars are the positions of Bragg peaks. Cell parameters: *P*-1, a = 15.19 Å, b = 19.96 Å, c = 26.24 Å, $\alpha = 89.5^{\circ}$, $\beta = 79.02^{\circ}$, $\gamma = 84.28^{\circ}$, V = 7356.6 Å³ (wRp = 0.114).

Figure S4. Left: the powder XRD patterns for compound **2**. Right: the black circles are for the observed data. The red solid line is for the calculated data. The grey solid curve is for the difference. The vertical bars are the positions of Bragg peaks. Cell parameters: $P2_1/c$, a = 32.55 Å, b = 16.45 Å, c = 33.81 Å, $\beta = 113.8^\circ$, V = 16355.1 Å³ (wRp = 0.069).

Scheme S1. H₂opch, di-deprotonated opch²⁻ and corresponding coordination mode in 1.

Scheme S2. H₂opch, di-deprotonated opch²⁻ and corresponding coordination mode in 1.

Figure S5. Top-view of **1**. Color scheme: the opch²⁻ fragments in turquoise, the $C_{10}H_7PO_3^{2-}$ fragments in rose, Dy in gold, O in red, N in blue, C in rose, P in pink.

Figure S6. Side-view of **1**. Color scheme: the opch²⁻ fragments in turquoise, the $C_{10}H_7PO_3^{2-}$ fragments in rose, Dy in gold, O in red, N in blue, C in rose, P in pink.

Figure S7. Unit cell of 1 showing the presence of two isomers.

Figure S8. Coordination environments of six crystallographically independent Dy^{III} ions and five Na^I ions in **1**. Color scheme: the opch²⁻ fragments in turquoise, the C₁₀H₇PO₃²⁻ fragments in rose, Dy in gold, O in red, N in blue, C in rose, P in pink.

Figure S9. Space-filling representation of 1. Color scheme: Dy in gold, Na in green, O in red, N in blue, P in pink, C in rose, H in bright green.

Figure S10. Illustration showing the hydrogen-bonding interactions (brown dash lines) and the double-chain supramolecular arrangement of the molecules in **1**.

Scheme S3. H_2 opch, di-deprotonated opch²⁻ and corresponding coordination mode in 2.

Scheme S4. H₂opch, di-deprotonated opch²⁻ and corresponding coordination mode in 2.

Figure S11. Single-crystal structure of 2. Color scheme: the opch²⁻ fragments in turquoise, the $C_{10}H_7PO_3^{2-}$ fragments in rose, Dy in gold, O in red, N in blue, C in rose, P in pink.

Figure S12. Top-view of **2**. Color scheme: the opch²⁻ fragments in turquoise, the $C_{10}H_7PO_3^{2-}$ fragments in rose, Dy in gold, O in red, N in blue, C in rose, P in pink.

Figure S13. Continuous observation of the Na₄Dy₈ core from top- to side-view in 2.

Figure S14. The $[Na_4Dy_8(C_{10}H_7PO_3)_8]^{12+}$ core for 2. Color scheme: the $C_{10}H_7PO_3^{2-}$ fragments in rose, Dy in gold, O in red, C in rose, P in pink.

Figure S15. Coordination environments of eight crystallographically independent Dy^{III} ions and four Na^I ions in **2**. Color scheme: the opch²⁻ fragments in turquoise, the $C_{10}H_7PO_3^{2-}$ fragments in rose, Dy in gold, O in red, N in blue, C in rose, P in pink.

Figure S16. The [Na₄Dy₈(opch)₄(PO₃)₈]⁴⁺ core for **2**. Color scheme: the opch²⁻ fragments in turquoise, the PO₃²⁻ fragments in rose, Dy in gold, O in red, N in blue, C in rose, P in pink.

Figure S17. Space-filling representation of **2**. Color scheme: Dy in gold, Na in green, O in red, N in blue, P in pink, C in rose, H in bright green.

Figure S18. Frequency dependence of the $\chi'(a)$ and $\chi''(b)$ products, *ac* susceptibilities under zero *dc* field for **1**. The $\ln(\chi''/\chi')$ versus T^{-1} plots (c). Temperature dependence of the $\chi'T(d)$, $\chi'(e)$ and $\chi''(f)$ products, *ac* susceptibilities (MPMS3).

Figure S19. Field dependence of the $\chi'(a)$ and $\chi''(b)$ products, ac susceptibility of 1 at 1000 Hz and 2 K. Frequency dependence of the $\chi'(c)$ product, *ac* susceptibilities under zero *dc* field. Temperature dependence of the $\chi'T(d)$, $\chi'(e)$ and $\chi''(f)$ products, *ac* susceptibilities (PPMS).

Figure S20. Frequency dependence of the $\chi'(a)$ and $\chi''(b)$ products, *ac* susceptibilities under zero *dc* field for **2** (MPMS3). The $\ln(\tau)$ versus T^{-1} plots (c). Temperature dependence of the $\chi'T(d)$, $\chi'(e)$ and $\chi''(f)$ products, *ac* susceptibilities (PPMS).

Figure S21. Field dependence of the $\chi'(a)$ and $\chi''(b)$ products, ac susceptibility of **2** at 1000 Hz and 2 K. Frequency dependence of the $\chi'(c)$ product, *ac* susceptibilities under zero *dc* field. Temperature dependence of the $\chi'T(d)$, $\chi'(e)$ and $\chi''(f)$ products, *ac* susceptibilities (PPMS).