Supporting Information for

Crystal Engineering of co-crystal of antipyrine and 2chlorobenzoic acid: relative energetic contributions from multipolar refinement

Aqsa Bilal^a, Arshad Mehmood^b, Sajida Noureen^a, Claude Lecomte^{c,d}, Maqsood Ahmed^{a*}

^aMaterials Chemistry Laboratory, Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus 63100, Pakistan.

^bDepartment of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas

76129, USA. ^cUniversite' de Lorraine, Laboratoire CRM2, UMR CNRS 7036, Boulevard des aiguillettes BP70239, Vandoeuvre-les-Nancy, 54506, France, and ^dCNRS, Laboratoire CRM2, UMR CNRS 7036, Boulevard des aiguillettes, BP70239, Vandoeuvre-les-Nancy, 54506, France

*Correspondence e-mail: *maqsood.ahmed@iub.edu.pk*

Figure S1 Crystal image of co-crystal mounted on glass

needle.

Figure S2 Residual electron density maps of molecular complex (AN-CBA) after IAM refinement with *MoPro* at contour level of 0.05 e Å⁻³ and with $\sin\theta/\lambda=0.95$ Å⁻¹.

Figure S3: A fractal dimensions plot comparing the residual electron densities after experimental and theoretical $(\sin\theta/\lambda \text{ of } 0.95 \text{ Å}^{-1})$ multipolar refinements.

Figure S4 Powder X-ray diffraction pattern for co-crystal (AN-CBA), antipyrine and 2-chloro benzoic acid (a) and simulated pattern for co-crystal (b).

Figure S5 TGA with DSC curve of (a) co-crystal, AN-CBA and (b) pure antipyrine.

Figure S6 A structure overlay of AN moiety in cocrystal (red) and pure drug (green).

Figure S7 Influence of non-covalent interaction, C····H: (a) chalcogen bond, O3····Cl1 and (b) on molecular geometry of antipyrine in co-crystal.

Figure S8 Fingerprint plots of antipyrine (A) and 2-Cholrobenzoic acid (B), showing the percentage of various interactions in the co-crystal AN-CBA

Figure S9 Gradient vector field of (a) MM_{exp} and (b) MM_{theo} model of the molecular complex AN-CBA, showing the zero flux surfaces forming boundaries of atomic basin of individual atoms.

Figure S10: Dipole moment and their direction of molecular complex (AN-CBA).

No.	Bonds	D _{optimise} (Å)	D _{neutron} (Å)
1	O2—H2	1.04627	0.980
2	C2—H2A	1.08886	1.083
3	С3—Н3	1.08998	1.083
4	C4—H4	1.08821	1.083
5	С5—Н5	1.08982	1.083
6	С6—Н6	1.08870	1.083
7	С8—Н8	1.08040	1.083
8	C10—H10C	1.09980	1.077
9	C10—H10B	1.09304	1.077
10	C10—H10A	1.09712	1.077
11	C11—H10B	1.09634	1.077
12	C11—H10A	1.09167	1.077
13	C11—H10C	1.09265	1.077
14	С13—Н13	1.08837	1.083
15	C14—H14	1.08931	1.083
16	С15—Н15	1.08985	1.083
17	С16—Н16	1.08872	1.083

 Table S1: The optimized and neutron bond lengths of H atoms.

CONKAP	C2		C6							
CONKAP	C3		C5							
CONKAP	C4		C14							
CONKAP	H2A		H6							
CONKAP	H3	H4	Н5	H13	H14	H15				
CONKAP	H10A		H10B		H10C					
CONKAP	H11A		H11B		H11C					
	ľ									
AVEPVM	C2				C6					
AVEPVM	C3				C5					
AVEPVM	C4				C14					
AVEPVM	C3		C4		C13	C15				
AVEPVM	H2A				H6					
AVEPVM	H3	H4	Н5	H13	H14	H15				
AVEPVM	H10A		H10B		H10C					
AVEPVM	H11A		H11B		H11C					
AVEPVM	H2A	H3	H8	H10A	H16					
SYMPLM mxmy			Cl1	Cl1						
SYMPLM			N1	N1						
SYMPLM mz			01	01						
SYMPLM mymz			C1	C1						
SYMPLM mz			02	02						
SYMPLM			N2	N2						
SYMPLM mymz			C2	C2						
SYMPLM mymz			C3	C3						
SYMPLM mz			O3	03						
SYMPLM mymz			C4	C4						
SYMPLM mymz			C5							
SYMPLM mymz			C6							
SYMPLM mz			C7							
SYMPLM mz			C8	C8						
SYMPLM mz			С9							
SYMPLM 3m			C10							
SYMPLM 3m			C11							
SYMPLM mz			C12							
SYMPLM mymz			C13							
SYMPLM mymz		C14								
SYMPLM mymz			C15							
SYMPLM mymz			C16							
SYMPLM mz			C17							
SYMPLM mz		SYMPLM mz				C18				

Crystallographic Refinement details of the AN-CBA cocrystal without I/σ cutoff.

S1. Charge density distribution

The study of topological properties reveals important information about bond type i.e. covalent, ionic, H—H interaction, Van der Waal's forces and strength of chemical bonds ¹. Topological analysis of (I) has been performed based on the following topological indicators i.e. the electron density, ellipticity, electrostatic potential and dipole moment. There is a very good agreement between the experimental and theoretical values that prove that the experimental model is correct. All BCPs, electron density $\rho_{BCP}(r)$, and laplacians of electron density of co-crystal have been calculated and summarized in Table S4. The electron density derived topological parameter of pyrazalone ring, later discussed in detail, are yet to be reported in literature.

Static deformation density $[\Delta \rho_{static}(\mathbf{r})]$ map was plotted using *MoProViewer* software ² and shown in **Figure S13(a)**. These maps represent comparable results with characteristic accumulation of electron density both in bonding as well as lone pair regions. In particular, the loan pair around O1 and O3 is normal for carbonyl oxygen participating as acceptors of hydrogen bonds (C7=O1····H2 and C18=O3·····H8). However, a sharp contrast in electron density accumulated at N1—N2 and N1—C7 in pyrazalone ring is observed in both experimental and theoretical model (table S3).

The aspherical electron density distribution observed around Cl atom in static deformation density maps is due to polar fattening effect ^{3, 4}; better depicted by the 3D static deformation density map as illustrated in Figure S13(b).

Figure S13 (a) Static deformation density maps after (a) MM_{exp} and (b) MM_{theo} refinement at contour level of 0.05 e Å⁻³.

Figure S13 (b) 3D static deformation density maps of C17-Cl1 bond after (a) MM_{exp} and (b) MM_{theo} refinement at contour level of 0.05 e Å⁻³.

Topological properties of (3, -1) CPs in covalent interaction of **(AN-CBA)**: distance (Å), electron density (e Å⁻³), Laplacian (e Å⁻⁵), Hessians eigenvalues (e Å⁻⁵), and ε = ellipticity. The experimental values are given in upper line and theoretical values in lower line.

Bond	d ₁₂	d _{1CP}	d _{2BCP}	$\rho_{\rm BCP}({\bf r})$	$\nabla^2_{BCP}(\mathbf{r})$	λ ₁	λ_2	λ3	3
02 019	1.214	0.795	0.419	2.964	-26.860	-29.92	-25.09	28.15	0.192
03=018	1.214	0.777	0.437	2.868	-28.059	-25.27	-22.84	20.05	0.106
01-07	1.257	0.805	0.452	2.684	-29.082	-23.56	-20.85	15.33	0.130
UI=C/	1.257	0.784	0.473	2.557	-27.165	-21.94	-18.20	12.97	0.206
O2 C18	1.318	0.838	0.480	2.314	-27.079	-19.74	-17.99	10.65	0.097
02-018	1.318	0.809	0.509	2.284	-21.370	-18.08	-16.59	13.30	0.090
	1.392	0.692	0.700	2.222	-4.196	-18.44	-16.15	30.39	0.141
IN I—IN2	1.392	0.699	0.693	2.015	2.754	-16.31	-12.72	31.78	0.283
	1.371	0.674	0.698	2.216	-18.901	-16.84	-12.80	10.74	0.315
108-09	1.371	0.644	0.727	2.095	-16.388	-15.75	-11.58	10.94	0.360
C12 C12	1.401	0.714	0.687	2.156	-18.936	-16.42	-13.42	10.91	0.224
C12—C13	1.401	0.708	0.693	2.061	-16.281	-15.56	-12.37	11.65	0.258
C12 C14	1.392	0.706	0.685	2.155	-18.765	-15.44	-13.41	10.08	0.152
C13—C14	1.392	0.701	0.690	1.993	-15.259	-14.68	-11.94	11.36	0.229
	1.393	0.708	0.686	2.154	-18.652	-15.38	-13.37	10.10	0.151
03-04	1.393	0.698	0.695	2.173	-18.040	-16.58	-13.70	12.24	0.210
C4 C5	1.395	0.687	0.709	2.148	-18.519	-15.34	-13.32	10.14	0.151
C4—C3	1.395	0.694	0.702	2.077	-16.700	-15.60	-13.04	11.93	0.197
	1.395	0.707	0.688	2.141	-18.148	-16.00	-13.11	10.96	0.220
C1 - C2	1.395	0.712	0.683	2.092	-17.120	-16.14	-12.91	11.93	0.250
C1 C6	1.396	0.707	0.689	2.138	-18.082	-15.97	-13.09	10.98	0.220
	1.396	0.713	0.683	2.176	-18.312	-16.91	-13.63	12.23	0.241
C12 C17	1.402	0.712	0.690	2.137	-17.857	-16.62	-12.72	11.48	0.306
C12—C17	1.402	0.692	0.711	2.005	-15.068	-14.86	-11.94	11.73	0.245

	1.393	0.694	0.700	2.133	-18.613	-16.06	-13.11	10.56	0.225
C2-C3	1.393	0.701	0.692	1.974	-14.777	-14.51	-12.05	11.78	0.204
	1.394	0.696	0.698	2.132	-17.738	-16.18	-12.81	11.25	0.263
C16—C17	1.394	0.685	0.709	1.968	-14.516	-14.51	-11.58	11.57	0.253
	1.394	0.700	0.694	2.130	-18.522	-16.03	-13.08	10.58	0.226
C5—C6	1.394	0.692	0.702	1.977	-14.736	-14.52	-12.06	11.84	0.204
	1.363	0.833	0.531	2.120	-16.174	-15.75	-14.21	13.78	0.109
N2—C9	1.363	0.790	0.573	1.980	-12.862	-14.61	-12.00	13.75	0.218
	1.394	0.824	0.570	2.109	-18.386	-16.47	-13.93	12.01	0.183
NI-C/	1.394	0.803	0.591	1.834	-10.295	-13.40	-10.90	14.00	0.230
014 015	1.394	0.697	0.697	2.103	-17.829	-15.02	-13.10	10.29	0.147
014-015	1.394	0.692	0.702	2.054	-16.258	-15.32	-12.53	11.58	0.223
015 016	1.392	0.683	0.709	2.090	-17.623	-15.51	-12.98	10.87	0.196
C13-C16	1.392	0.693	0.699	2.100	-16.982	-16.02	-12.70	11.74	0.261
67 68	1.422	0.766	0.657	2.016	-16.826	-14.61	-11.73	9.51	0.245
	1.422	0.753	0.670	1.964	-14.364	-14.41	-11.35	11.39	0.270
NI CI	1.421	0.872	0.549	1.857	-11.686	-12.42	-11.38	12.12	0.092
NI-CI	1.421	0.803	0.618	1.736	-8.231	-12.72	-10.95	15.44	0.162
C12 C18	1.499	0.742	0.757	1.824	-14.975	-13.71	-11.85	10.59	0.157
C12—C18	1.499	0.737	0.762	1.674	-11.000	-11.77	-10.43	11.20	0.129
C9 119	1.080	0.739	0.342	1.824	-17.836	-17.74	-16.67	16.57	0.065
Со—по	1.080	0.703	0.378	1.735	-14.743	-15.95	-14.89	16.10	0.071
	1.089	0.739	0.350	1.820	-16.887	-17.50	-16.89	17.51	0.036
Со—по	1.089	0.716	0.373	1.808	-15.488	-16.81	-16.06	17.38	0.047
	1.089	0.739	0.350	1.820	-16.873	-17.49	-16.89	17.51	0.036
С2—п2А	1.089	0.729	0.360	1.818	-15.650	-17.38	-16.48	18.21	0.055
С16 Ц16	1.089	0.736	0.353	1.802	-15.961	-17.28	-16.81	18.13	0.028
C10—H10	1.089	0.719	0.370	1.748	-14.551	-15.91	-15.76	17.12	0.010
С12 Ц12	1.088	0.729	0.360	1.793	-15.946	-16.42	-16.34	16.81	0.005
	1.088	0.721	0.367	1.794	-15.532	-16.57	-16.09	17.13	0.030
C5 U5	1.090	0.730	0.360	1.791	-15.875	-16.76	-15.90	16.79	0.054
	1.090	0.726	0.364	1.826	-15.548	-17.33	-16.50	18.28	0.051
С3 Н3	1.090	0.730	0.360	1.791	-15.864	-16.75	-15.90	16.79	0.054
	1.090	0.719	0.371	1.766	-14.411	-16.37	-15.73	17.69	0.040
CA HA	1.088	0.721	0.367	1.745	-14.782	-16.01	-15.29	16.51	0.047
	1.088	0.712	0.377	1.740	-14.375	-15.89	-15.25	16.77	0.042
C15 H15	1.090	0.723	0.367	1.742	-15.044	-16.16	-15.37	16.49	0.051
	1.090	0.706	0.384	1.741	-14.310	-15.75	-14.95	16.38	0.054
C14—H14	1.089	0.722	0.368	1.742	-14.721	-15.97	-15.25	16.50	0.047
	1.089	0.730	0.359	1.793	-15.567	-17.08	-16.13	17.63	0.059
N2_C11	1.458	0.859	0.599	1.723	-11.589	-11.72	-10.67	10.80	0.099
	1.458	0.830	0.628	1.570	-5.352	-10.84	-9.61	15.09	0.128
C10_H10P	1.093	0.726	0.367	1.720	-13.599	-15.70	-15.11	17.22	0.039
	1.093	0.705	0.388	1.676	-12.645	-14.68	-14.49	16.52	0.013
С10 Ц104	1.097	0.729	0.369	1.709	-13.320	-15.55	-14.96	17.19	0.039
C10—H10A	1.097	0.721	0.377	1.716	-13.221	-15.31	-15.24	17.33	0.004

02 112	1.046	0.825	0.221	1.709	-18.778	-25.09	-24.95	31.27	0.006
02—п2	1.046	0.795	0.252	1.616	-10.997	-20.84	-20.83	30.67	0.000
C10 U10C	1.100	0.730	0.370	1.702	-13.143	-15.41	-14.90	17.16	0.034
	1.100	0.723	0.377	1.742	-13.750	-15.75	-15.38	17.38	0.024
C0 C10	1.483	0.721	0.762	1.693	-10.606	-11.90	-10.83	12.12	0.099
C9_C10	1.483	0.784	0.699	1.758	-11.467	-12.27	-10.86	11.66	0.130
C11 1111A	1.092	0.785	0.307	1.571	-15.867	-15.67	-13.50	13.31	0.160
СП—ппа	1.092	0.727	0.365	1.806	-15.318	-17.13	-16.51	18.33	0.038
	1.093	0.786	0.307	1.568	-15.794	-15.62	-13.48	13.30	0.158
	1.093	0.717	0.376	1.711	-13.820	-15.91	-15.13	17.23	0.052
C11 U11D	1.096	0.788	0.309	1.558	-15.532	-15.47	-13.35	13.29	0.159
CII—HIIB	1.096	0.730	0.366	1.799	-14.252	-16.82	-16.45	19.02	0.023
C11 C17	1.729	0.982	0.747	1.308	-1.876	-7.77	-7.01	12.91	0.108
	1.729	0.986	0.743	1.265	-0.449	-7.11	-6.20	12.87	0.147

A graphical representation of BCP of co-crystal at all (3, -1) critical points (Figure S14) reveal the dissimilar positioning of the bond critical points for homonuclear and heteronuclear bonds: Position of BCPs in C-C and N-N bonds is at the middle of bond whereas BCPs of C-H, C-N and C-O bonds tend to shift towards the electropositive atoms. The carboxyl C—O bond (C18—O2; 2.314/2.284 eÅ-3) exhibits low electron density accumulation compared to O3=C18 and O1=C7 bonds which conform that electron density is more concentrated at carbonyl functional group than other C-O bonds. The N-C bonds in pyrazolone ring exhibit different electron densities ranging from 2.120/1.980 $e^{A^{-3}}$ to 1.723/1.570 $e^{A^{-3}}$ (experimental/theoretical) which is comparable with literature⁵⁻¹⁰, > 2.2 ± 0.2 $e^{A^{-3}}$. Out of all N—C interactions, the N1—C7 bond has the higher value of electron density owing to the neighbouring O1 atom while the higest density accumulation is observed at N2-C9 bond due covelenty bonded electron donating C10-methyl group; resulting density depleation at neighbouring covalent bond. Additionally, the electron density contained by C-H bond in benzene rings is higher as compared to that of C-H bond in methyl group. Among all the homonuclear bonds, the N1-N2 bond in pyrazolone ring has maximum comparable theoretical and experimental electron density of 2.222/2.015 $e^{A^{-3}}$. This concludes a higher concentration of electron density in N-N bonds compared to C-C bonds but still lower than the C=O and C—O heteroatomic bonds.

Figure S14 A view of co-crystal showing the covalent bond critical point with atom numbering scheme.

Laplacian of electron density $\nabla_{PCP}(r)$ as shown in Figure S15 portray well correlated charge density concentrated and depleted regions in experimental and theoretical model which defines the electrophilic and nucleophilic sites of attacking in the various systems ¹¹. The negative laplacian of electron density observed at carbonyl functional group (O3=C18; -26.86/-28.06 $e^{A^{-5}}$ and O1=C7; -29.08/-27.17 $e^{A^{-5}}$; experimental/theoretical) is higher than carboxyl O2-C8 (-27.08/-21.37 eÅ-5) and hydroxyl group (O2-H2; -18.78/-10.10 eÅ-5). Additionally, the topological difference of experimental and theoretical charge density especially laplacian of polar bond is evident in table 3, not surprising as the anisotropic displacement parameters are not taken into account for the theoretical model. The carbon atom bonded to heavy atom (Cl1-C17) has laplacian of -1.88/-0.45 eÅ⁻⁵, indicating that it contains much lower charge density accumulation at BCP than other bonds. The C-C bond of aromatic ring exhibits strongest negative laplacian of electron density (-18.94/-16.28 to -17.62/-16.98 $e^{A^{-5}}$) which is consistent with aromatic delocalized bonding, as expected. Nevertheless the laplacian of electron value for N1-N2 bond is the smallest among all the bonds, at -4.20/2.75 eÅ⁻⁵, indicating that charge concentration at this bond is lowest compared to other bonds and this noteworthy difference is due to the neighbouring benzene ring and methyl group. The negative values of $\nabla^2 \rho$ (as tabulated in table 3) are a sign of the expected shared shell (covalent) character of all bonding interactions in co-crystal.

Figure S15 Laplacian maps after (a) MM_{exp} and (b) MM_{theo} refinement at contour level of 0.05 e Å⁻³.

Bond ellipticity [$\mathcal{E} = \lambda_1 / \lambda_2 - 1$] measures the extent of privileged charge accretion in a plane vertical to the bond path ¹¹. Thus it gives an insight into the symmetric nature of electron density at BCPs and bonding nature, sigma and pi character of the bond ^{12, 13}. Bonds with cylindrical symmetry have ε =0 but this value is greater than 0 if a double bond is present. According to Bader, charge density prefers to accumulate more in the plane of ring than in the π -plane. Therefore in case of homonucler bonds of the ring (C—C and N—N), the C8—C9, C16—C17 and N1—N2 have ellipticity of 0.315/0.360, 0.263/0.253, and 0.141/0.283 (experimental/theoretical), depicting that the ε value is relatively higher than carbonyl bonds. Furthermore, N1—C7 bond has ε value of 0.183/0.230, which is higher than all other N—C bonds in pyrazalone ring. As for C—H bonds the ellipticity value lies in 0.005/0.030-0.160/0.038 range. The caobonyl group (O3=C18 and O1=C7) with ellipticity of 0.192/0.106 and 0.130/0.206 shows an elevation in ellipticity compared to O2—C18 bond (0.097/0.090), indicating deformation or double bond. However amongst all the bond, the O2—H1 hydroxyl bond has the smallest ε value, 0.006/0.000.

Topological properties of (3, -1) CPs in intermolecular interaction of the **AN-CBA**: distance (Å), electron density (e Å⁻³), Laplacian (e Å⁻⁵), Hessians eigenvalues (e Å⁻⁵), $\varepsilon =$ ellipticity, $G_{CP} =$ bond kinetic-energy density (kJ mol⁻¹ Bhor⁻³) and $V_{CP} =$ bond potential-energy density (kJ mol⁻¹ Bhor⁻³). Experimental and Theoretical values are given in blue and red, respectively.

Interactions	d ₁₂	d _{1CP}	d _{2BCP}	$\rho_{\rm BCP}$ (r)	$\begin{array}{c c} \nabla^2 \rho \\ \textbf{(BCP)} \end{array}$	λ ₁	λ ₂	λ3	ε	G _{CP}	V _{CP}
	1.513	0.426	1.058	0.426	5.878	-2.96	-2.93	11.77	0.009	182.14	-204.17
02—H2····01	1.513	0.485	1.028	0.410	5.857	-2.77	-2.75	11.38	0.008	177.01	-194.49
	2.581	1.027	1.614	0.058	0.759	-0.18	-0.13	1.06	0.402	16.51	-12.35
C10—H10A····C8	2.581	1.032	1.605	0.059	0.779	-0.17	-0.12	1.07	0.409	16.95	-12.69
C14—	2.320	0.923	1.399	0.057	1.162	-0.20	-0.20	1.56	0.007	23.74	-15.84
H14O1 ⁱⁱ	2.320	0.928	1.397	0.059	1.163	-0.22	-0.22	1.61	0.012	23.95	-16.22
	2.662	1.210	1.488	0.051	0.752	-0.17	-0.16	1.08	0.080	15.86	-11.24
С8—н802…	2.662	1.223	1.483	0.045	0.694	-0.15	-0.13	0.97	0.141	14.39	-9.89
C ⁹ 119O2	2.704	1.233	1.500	0.043	0.628	-0.15	-0.12	0.90	0.209	13.05	-9.00
Со—по…Оз	2.704	1.233	1.507	0.040	0.613	-0.13	-0.12	0.86	0.149	12.60	-8.51
C12C9	3.326	1.637	1.721	0.041	0.467	-0.08	-0.01	0.56	6.900	9.99	-7.26
C13C8	3.326	1.648	1.704	0.042	0.484	-0.08	-0.02	0.58	3.110	10.37	-7.57
	2.693	1.097	1.636	0.039	0.539	-0.11	-0.07	0.72	0.516	11.19	-7.70
С4—н4…Со"	2.693	1.099	1.625	0.040	0.562	-0.10	-0.07	0.73	0.324	11.65	-7.99
C10—	2.867	1.297	1.628	0.037	0.519	-0.11	-0.04	0.67	1.770	10.73	-7.32
H10C····O2 ^v	2.867	1.255	1.633	0.035	0.513	-0.10	-0.04	0.66	1.377	10.51	-7.05
C10—	2.926	1.293	1.687	0.035	0.489	-0.08	-0.06	0.63	0.261	10.07	-6.83
H10B·····O3 ^v	2.926	1.296	1.686	0.032	0.466	-0.07	-0.05	0.58	0.305	9.49	-6.28
C10—	2.542	1.004	1.543	0.035	0.731	-0.12	-0.09	0.94	0.268	14.44	-8.98
H10C····O1 ^v	2.542	1.019	1.532	0.033	0.721	-0.10	-0.08	0.90	0.284	14.15	-8.67
C13—	2.615	1.090	1.539	0.034	0.613	-0.12	-0.11	0.84	0.102	12.25	-7.81
H13O2 ⁱⁱ	2.615	1.111	1.528	0.034	0.603	-0.11	-0.11	0.82	0.001	12.06	-7.69
C2 H2AC12i	2.856	1.195	1.709	0.033	0.429	-0.08	-0.05	0.57	0.523	8.83	-5.97
C2—112A ~C12	2.856	1.197	1.701	0.032	0.442	-0.07	-0.05	0.56	0.429	9.04	-6.04
C2 H2AO2i	2.633	1.042	1.592	0.031	0.635	-0.10	-0.08	0.81	0.183	12.51	-7.73
C2—112A~05	2.633	1.056	1.578	0.030	0.623	-0.09	-0.06	0.78	0.473	12.24	-7.50
C2 H2C16i	2.963	1.189	1.824	0.030	0.401	-0.07	-0.04	0.50	0.963	8.18	-5.43
C3—115 ⁻⁰ C10	2.963	1.174	1.799	0.030	0.422	-0.06	-0.02	0.50	1.942	8.56	-5.62
C11—	3.076	1.290	1.800	0.029	0.312	-0.08	-0.05	0.44	0.632	6.51	-4.53
H11C····C5	3.076	1.238	1.847	0.023	0.337	-0.06	-0.04	0.43	0.398	6.69	-4.21
C11H14y	3.218	1.405	1.853	0.028	0.347	-0.08	-0.06	0.49	-0.06	0.49	-0.06
	3.218	1.405	1.866	0.030	0.370	-0.08	-0.06	0.50	-0.06	0.50	-0.06
C10—	2.761	1.177	1.604	0.024	0.448	-0.07	-0.07	0.59	0.025	8.78	-5.36
H10A····O3	2.761	1.210	1.583	0.025	0.432	-0.07	-0.06	0.56	0.251	8.51	-5.25
C11H3i	3.280	1.417	1.905	0.022	0.283	-0.06	-0.05	0.39	0.110	5.66	-3.63
	3.280	1.409	1.921	0.024	0.309	-0.06	-0.04	0.41	0.279	6.26	-4.10
Cl1····H16 ^{vi}	2.987	1.120	1.878	0.021	0.395	-0.05	-0.05	0.50	0.032	7.67	-4.56

	2.987	1.115	1.881	0.024	0.426	-0.06	-0.06	0.55	0.006	8.38	-5.15
С15—Н15…С3	3.140	1.298	1.892	0.018	0.275	-0.05	-0.03	0.36	0.730	5.39	-3.29
	3.140	1.321	1.879	0.020	0.278	-0.05	-0.02	0.35	1.045	5.51	-3.44
	3.229	1.348	1.900	0.017	0.233	-0.04	-0.02	0.29	0.633	4.59	-2.83
Со—поСто	3.229	1.353	1.902	0.016	0.223	-0.03	-0.02	0.27	0.984	4.35	-2.63
Cl1····Cl1 ^{vi}	4.186	2.093	2.093	0.011	0.149	-0.02	-0.01	0.18	1.959	2.87	-1.68
	4.190	2.095	2.095	0.015	0.190	-0.03	-0.01	0.23	1.267	3.73	-2.28

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, y+1/2, -z+1/2; (ii) -x+1, -y+1, -z+1; (iv) -x, -z+1/2; (ii) -x+1, -y+1, -z+1; (iv) -x, -z+1/2; (ii) -x+1, -z+1; (iv) -x, -z+1/2; (iv) -x, -z+1/2;

z+1/2; (v) *x*, *y*-1, *z*; (vi) -*x*+2, -*y*+1, -*z*+1.

Figure S16: A view of the reference dimer in Bold (AN-CBA) surrounded by a cluster of neighbouring molecules, showing the intermolecular bond paths (green lines) and critical points (red dots) with Cl1 atom. symmetry codes are as in the man text.

Valance population of AN and CBA moiety along with electrostatic potential of experimental and theoretical AN-CBA.

ATOMS	AN_EXP	AN_THEO	ATOMS	CBA_EXP	CAB_THEO
N1	5.19213	5.04441	Cl1	7.10304	7.1988
01	6.39196	6.22623	02	6.39553	6.21893
C1	4.06782	4.02175	H2	0.60546	0.70887
N2	5.20049	5.02377	03	6.13726	6.04038
C2	4.01798	4.05285	C12	3.92065	3.9644
H2A	0.88305	0.91551	C13	4.24215	4.07078
C3	4.26912	4.053	H13	0.81387	0.90052
Н3	0.81395	0.93076	C14	4.07131	4.06194
C4	4.07122	4.08872	H14	0.81401	0.8881
H4	0.81385	0.91503	C15	4.02533	4.08453
C5	4.26905	4.06063	H15	0.81387	0.92675
H5	0.81392	0.9368	C16	4.09493	4.02892
C6	4.01818	4.05622	H16	0.8715	0.91707
H6	0.883	0.92493	C17	4.10221	4.00001
C7	4.13507	4.12201	C18	4.07021	4.11504
C8	4.21706	3.81711			
H8	0.79375	0.89695			
С9	3.61309	4.18632			
C10	4.3365	3.95701			
H10A	0.88165	0.93274			
H10B	0.88156	0.94347			
H10C	0.88164	0.93885			
C11	4.70046	4.04128			
H11A	0.59078	0.92378			
H11B	0.59081	0.95399			
H11C	0.59088	0.91081			
Total	71.91897	71.87493		52.08133	52.12504

Figure S17: Electrostatic potential of co-crystal (AN-CBA) after multipolar refinement generated at isosurface value of 0.05 e/Å³, (a) experimental and (b) theoretical.

References

- 1. P. S. V. Kumar, V. Raghavendra and V. Subramanian, *Journal of Chemical Sciences*, 2016, **128**, 1527-1536.
- 2. B. Guillot, 2012.
- 3. V. R. Hathwar, R. G. Gonnade, P. Munshi, M. M. Bhadbhade and T. N. Guru Row, *Crystal Growth & Design*, 2011, **11**, 1855-1862.
- 4. V. R. Hathwar and T. N. Guru Row, *Crystal Growth & Design*, 2011, **11**, 1338-1346.
- 5. A. Owczarzak and M. Kubicki, *Crystals*, 2018, **8**, 132.
- 6. M. Gryl, S. Cenedese and K. Stadnicka, *The Journal of Physical Chemistry C*, 2015, **119**, 590-598.
- 7. B. Fournier, E.-E. Bendeif, B. Guillot, A. Podjarny, C. Lecomte and C. Jelsch, *Journal of the American Chemical Society*, 2009, **131**, 10929-10941.
- 8. C. Kalaiarasi, M. S. Pavan and P. Kumaradhas, *Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials*, 2016, **72**, 775-786.
- 9. M. Gryl, A. Krawczuk-Pantula and K. Stadnicka, *Acta Crystallographica Section B: Structural Science*, 2011, **67**, 144-154.
- 10. J. Hey, D. Leusser, D. Kratzert, H. Fliegl, J. M. Dieterich, R. A. Mata and D. Stalke, *Physical Chemistry Chemical Physics*, 2013, **15**, 20600-20610.
- 11. C. Gatti, V. Saunders and C. Roetti, *The Journal of chemical physics*, 1994, **101**, 10686-10696.
- 12. C. Silva Lopez and A. R de Lera, *Current Organic Chemistry*, 2011, **15**, 3576-3593.
- 13. R. F. Bader, *Chemical Reviews*, 1991, **91**, 893-928.