Supporting Information

The effect of halides and coordination mode of 4-amino-2,1,3-benzothiadiazole on the luminescence properties of its Zn complexes

by E. K. Pylova, R. M. Khisamov, D. A. Bashirov, T. S. Sukhikh and S. N. Konchenko

Table S1. Crystal data and structure refinement for the compounds. 4
Figure S1. Reciprocal space reconstructions for 45
Figure S2. (a) Crystal packing of the superstructure of 4
Figure S3. Experimental and simulated powder XRD patterns (Cu K α radiation) for [ZnL ₂ Br ₂] (1)6
Figure S4. Experimental powder XRD pattern (Cu K α radiation) for a sample from the reaction between ZnBr ₂ and L in a molar ratio of 1:1
Figure S5. Experimental and simulated powder XRD patterns (Cu K α radiation) for [ZnL ₂ I ₂] (3)7
Figure S6. Experimental and simulated powder XRD patterns (Cu K α radiation) for $[ZnLI_2]_n$ (4)7
Figure S7. Intermolecular interactions between <i>btd</i> moieties in the structure of 18
Figure S8. Intermolecular interactions in the structure of 2 8
Figure S9. Intermolecular interactions in the structure of 3 9
Figure S10. Intermolecular interactions in the structure of 4 9
Figure S11. TG, DTG and DTA curves depicting thermal decomposition of [ZnL ₂ Br ₂] (1)10
Figure S12. TG, DTG and DTA curves depicting thermal decomposition of [ZnL ₂ I ₂] (3)10
Figure S13. TG, DTG and DTA curves depicting thermal decomposition of $[ZnLI_2]_n$ (4)11
Figure S14. TG, DTG and DTA curves depicting thermal decomposition of free L
Figure S15. Emission and excitation spectra for solid compounds 1, 3 and 412
Figure S16. Emission spectra of powder 1 upon aging for 1.5 months12
Figure S17. Emission decay curve for 1 and the corresponding fit by two exponential decay13
Figure S18. Emission and excitation spectra of powder 1 and film of 1 in polystyrene matrix13
Table S2. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2Br_2]$ (1) at B3LYP/def2-TZVPP and PBE0/def2-TZVPP level
Table S3. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2Br_2]$ (1) at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level15
Table S4. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2Cl_2]$ at B3LYP/def2-TZVPP level
Table S5. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2I_2]$ (3) at B3LYP/def2- TZVPP and PBE0/def2-TZVPP level
Table S6. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2I_2]$ (3) at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level
Table S7. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_3L_2(NH_3)_2I_6]$ at B3LYP/def2-TZVPP and PBE0/def2-TZVPP level
Table S8. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_3L_2(NH_3)_2I_6]$ at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level20
Table S9. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_4L_3(NH_3)_2I_8]$ at B3LYP/def2-TZVPP and PBE0/def2-TZVPP level

Table S10. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_4L_3(NH_3)_2I_8]$ at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level	22
Table S11. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnLl_2]_n$ (4) with B3LYP functional.	23
Figure S19. Decomposition of 10 vertical excitation states for [ZnL ₂ Br ₂] (1) in terms of contribution from excitation types.	om 24
Figure S20. Decomposition of 10 vertical excitation states for $[ZnL_2I_2]$ (3) in terms of contribution from excitation types.	n 24
Figure S21. Frontier orbitals of [ZnL ₂ Br ₂] (1)	25
Figure S22. Frontier orbitals of [ZnL ₂ Cl ₂]	25
Figure S23. Frontier orbitals of [ZnL ₂ I ₂] (3)	26
Figure S24. Frontier orbitals of [ZnLI ₂] _n .(4)	27
Figure S25. Frontier molecular orbitals of $[Zn_3L_2(NH_3)_2I_6]$ and $[Zn_4L_3(NH_3)_2I_8]$	28
Figure S26. Overlay of optimized geometry of complex ${f 1}$ in the ground state and S_1 state	29
Figure S27. Overlay of optimized geometry of complex 3 in the ground state and S_1 state	29
Figure S28. Infrared spectra of polystyrene (PS), L in PS film and 1 in PS film	30

, Identification code	1	2	3	4	4(superstr.)
Empirical formula	$C_{12}H_{10}Br_2N_6S_2Zn$	C ₆ H₅Br₂N₃SZn	$C_{12}H_{10}I_2N_6S_2Zn$	$C_6H_5I_2N_3SZn$	C ₆ H ₅ I ₂ N ₃ SZn
Formula weight	527.57	376.38	621.55	470.36	470.36
Temperature/K	296(2)	150(2)	296(2)	150(2)	150(2)
Crystal system	monoclinic	triclinic	triclinic	monoclinic	monoclinic
Space group	C2/c	<i>P</i> –1	<i>P</i> –1	Сс	Сс
a/Å	27.4418(12)	5.9710(5)	7.539(3)	14.5768(5)	14.5782(6)
b/Å	4.7724(2)	7.5328(7)	11.020(5)	10.8025(4)	32.4028(12)
c/Å	12.8595(5)	11.7015(10)	12.373(6)	7.0493(2)	7.0488(3)
α/°	90	79.032(3)	101.973(16)	90	90
β/°	102.417(2)	78.762(3)	101.819(16)	95.8400(10)	95.846(2)
γ/°	90	77.370(3)	109.720(15)	90	90
Volume/Å ³	1644.73(12)	497.70(8)	903.5(7)	1104.26(6)	3312.4(2)
Z	4	2	2	4	12
$\rho_{calc}g/cm^3$	2.131	2.512	2.285	2.829	2.830
µ/mm⁻¹	6.612	10.658	5.013	7.963	7.964
F(000)	1024.0	356.0	584.0	856.0	2568.0
Crystal size/mm ³	0.42 × 0.03 × 0.03	0.22 × 0.17 × 0.08	$0.13 \times 0.08 \times 0.05$	$0.2 \times 0.1 \times 0.1$	$0.2 \times 0.1 \times 0.1$
Radiation	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =
Naulation	0.71073)	0.71073)	0.71073)	0.71073)	0.71073)
20 range for data collection/°	6.08 to 52.824	3.592 to 56.062	3.526 to 50.716	4.702 to 52.788	3.076 to 52.76
Index ranges	-34 ≤ h ≤ 28, -5 ≤ k	$-7 \le h \le 7, -9 \le k \le$	-9 ≤ h ≤ 8, -12 ≤ k ≤	-18 ≤ h ≤ 17, -13 ≤	-14 ≤ h ≤ 18, -30 ≤
	≤ 5, -16 ≤ ≤ 15	9, -15 ≤ l ≤ 15	13, -14 ≤ ≤ 14	k ≤ 13, -8 ≤ l ≤ 8	k ≤ 40, -8 ≤ l ≤ 8
Reflections collected	4139	4874	8045	4156	8493
	1671 [R _{int} =	2394 [R _{int} =	3207 [R _{int} =	2009 [R _{int} =	5020 [R _{int} =
Independent reflections	$0.0261, R_{sigma} = 0.02211$	$0.0222, R_{sigma} = 0.02051$	$0.0337, R_{sigma} = 0.04781$	$0.0738, R_{sigma} = 0.05411$	$0.0291, R_{sigma} = 0.04881$
Postraints/paramotors	0.0321]	2/124	0.0478]	0.0541]	0.0488]
$Coodness of fit on E^2$	1 028	2/124	1 002	4/150	1 0 4 0
	1.050	1.057	I.005	1.000 P = 0.0227 wP =	1.049
Final R indexes [I>=2σ (I)]	$R_1 = 0.0243, WR_2 = 0.0577$	$n_1 = 0.0214, WR_2 = 0.0494$	$n_1 = 0.0314, W n_2 = 0.0553$	$n_1 = 0.0337, wn_2 = 0.0782$	$n_1 = 0.0300, W n_2 = 0.1464$
	$R_1 = 0.0325$, w $R_2 = 0.0325$	$R_1 = 0.0260$, w $R_2 = 0.0260$	$R_1 = 0.0514$, w $R_2 =$	$R_1 = 0.0366$, w $R_2 =$	$R_1 = 0.0646$, w $R_2 =$
Final R indexes [all data]	0.0607	0.0508	0.0609	0.0793	0.1527
Largest diff. peak/hole / e Å ⁻³	0.43/-0.41	0.81/-0.40	0.56/-0.58	0.96/-0.47	2.36/-0.97
Flack parameter		-	-	0.41(6)	0.37(7)

Table S1. Crystal data and structure refinement for the compounds.

Figure S1. Reciprocal space reconstructions for **4**, the thickness of the layers of 0.10 Å. Left – 0kl layer; right – hk0 layer.

Figure S2. (a) Crystal packing of the superstructure of **4**. Ordered chains are coloured green, disordered ones are coloured blue and violet. (b) Representation of the disordered chain. Hydrogen atoms are omitted.

Figure S3. Experimental and simulated powder XRD patterns (Cu K α radiation) for [ZnL₂Br₂] (1). No impurities of solid L is revealed within the accuracy of the method.

Figure S4. Experimental powder XRD pattern (Cu K α radiation) for a sample from the reaction between ZnBr₂ and L in a molar ratio of 1:1, measured at 298 K (on a Bruker D8 Advance diffractometer) and 150 K (on a Bruker D8 Venture diffractometer). The compound does not correspond to the phase [ZnLBr₂] (**2**); the difference in the position of the peaks cannot be ascribed to temperature effects, while no phase transition is observed in the temperature range of 150 – 298K.

Figure S5. Experimental and simulated powder XRD patterns (Cu K α radiation) for [ZnL₂I₂] (**3**).

Figure S6. Experimental and simulated powder XRD patterns (Cu K α radiation) for $[ZnLl_2]_n$ (4).

Figure S7. Intermolecular interactions between *btd* moieties in the structure of **1** highlighted by orange dashed lines. Top – S…N contacts (3.16 Å). Bottom – π - π interactions (interplanar separation of 3.37 Å).

Figure S8. Intermolecular interactions in the structure of **2** highlighted by orange dashed lines. Left – S…Br contacts (3.37 Å). Right – π - π interactions (interplanar separation of 3.50 Å).

Figure S9. Intermolecular interactions in the structure of **3** highlighted by orange dashed lines. Left – S…N contacts (2.97 Å). Right – π - π - π -interactions (interplanar separation of 3.40 Å).

Figure S10. Intermolecular interactions in the structure of **4** highlighted by orange dashed lines. Left – S…I contacts (3.75 Å). Right – π - π interactions (interplanar separation of ca. 3.3 Å).

Figure S11. TG (black line), DTG (green line) and DTA (red line) curves depicting thermal decomposition of $[ZnL_2Br_2]$ (1). The first step at 170-220°C corresponds to loss of the first L molecule per complex (experimental / calculated mass loss of 30 / 28.7%), the second and the third poorly resolved steps at 220–850°C correspond to loos of the second L and sublimation of ZnBr₂.

Figure S12. TG (black line), DTG (green line) and DTA (red line) curves depicting thermal decomposition of $[ZnL_2I_2]$ (**3**). The first step at 140-190°C corresponds to loss of the first L molecule per complex (experimental / calculated mass loss of 23 / 24.3%), the second one at 200-285 °C corresponds to loss of the second L (experimental / calculated mass loss of 46 / 48.6%) and the third step at 285–600°C corresponds to sublimation of ZnI₂.

Figure S13. TG (black line), DTG (green line) and DTA (red line) curves depicting thermal decomposition of $[ZnLl_2]_n$ (4). The first step at 180-245°C (mass loss of 12%), the second step at 245-435°C (mass loss of 12%) and the third step at 435–850°C (mass loss of 78%) are not assigned.

Figure S14. TG (black line), DTG (green line) and DTA (red line) curves depicting thermal decomposition of free L. In the DTA curve, the first endothermic peak at 68 °C corresponds to melting of L, while the second peak at 168 °C corresponds to evaporation of L.

Figure S15. Emission (solid lines) and excitation (dashed lines) spectra for solid compounds **1**, **3** and **4**. For **1**, the excitation spectra are presented for both emission bands at 440 and 560 nm.

Figure S16. Emission spectra of powder **1** upon aging for 1.5 months. The spectra are normalized on the short wavelength band.

Figure S17. Emission decay curve (black) for 1 and the corresponding fit by two exponential decay (red)

Figure S18. Normalized emission (excitation at 350 nm; a) and excitation (at two emission wavelengths; b) spectra of powder 1 and film of 1 in polystyrene matrix.

Table S2. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2Br_2]$ (1) at B3LYP/def2-TZVPP and PBE0/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation. The contribution of the individual excitations is listed if larger than 0.1

n			B3LYP				PBEO	
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
1	377.5	0.1088	H-1→L+1	0.2097	363.7	0.1197	H-1→L+1	0.2839
			H→L	0.7696			H→L	0.6958
2	374.1	0.0088	H-1→L	0.3687	360.5	0.0103	H-1→L	0.3816
			H→L+1	0.6036			H→L+1	0.5959
3	361.9	0.0001	H-1→L	0.5639	336.6	0.0000	H-1→L	0.5480
			H→L+1	0.3694			H→L+1	0.3519
4	360.6	0.0000	H-1→L+1	0.6945	335.6	0.0005	H-1→L+1	0.6167
			H→L	0.2013			H→L	0.2482
5	349	0.0027	H-3→L+1	0.1074	325.3	0.0030	H-3→L+1	0.1646
			H-2→L	0.7790			H-2→L	0.6777
6	347.3	0.0003	H-3→L	0.3742	324.3	0.0014	H-3→L	0.4554
			H-2→L+1	0.5203			H-2→L+1	0.3955
7	341.9	0.0032	H-3→L	0.4583	318.8	0.0054	H-4→L	0.2624
			H-2→L+1	0.3911			H-3→L+1	0.5140
							H-2→L	0.1750
8	341.4	0.0043	H-4→L	0.2363	318.7	0.0034	H-4→L+1	0.1072
			H-3→L+1	0.6231			H-3→L	0.3308
			H-2→L	0.1131			H-2→L+1	0.4669
9	325.9	0.0070	H-4→L	0.7195	303.3	0.0103	H-4→L	0.6543
			H-3→L+1	0.2545			H-3→L+1	0.2986
10	324.5	0.0000	H-4→L+1	0.7748	302.3	0.0001	H-5→L	0.1354
			H-3→L	0.1483			H-4→L+1	0.6367
							H-3→L	0.1782
11	320	0.0012	H-5→L	0.8510	299.2	0.0006	H-5→L	0.7275
							H-4→L+1	0.1705
12	317.9	0.0016	H-5→L+1	0.9139	297.5	0.0012	H-5→L+1	0.8723
13	282.4	0.1208	H-6→L	0.8881	275.9	0.2059	H-7→L+1	0.2989
							H-6→L	0.5550
14	280.7	0.1021	H-7→L	0.3210	275.5	0.1107	H-7→L	0.4281
			H-6→L+1	0.5193			H-6→L+1	0.4221
15	280.1	0.0015	H-7→L	0.5821	266.5	0.0000	H-11→L	0.4760
			H-6→L+1	0.3796			H-10→L+1	0.4685
16	278.6	0.0824	H-7→L+1	0.8907	266.5	0.0000	H-11→L+1	0.4602
							H-10→L	0.4838
17	271.8	0.0000	H-11→L	0.4905	263.7	0.0000	H-7→L	0.4630
			H-10→L+1	0.4779			H-6→L+1	0.4768
18	271.8	0.0001	H-11→L+1	0.4677	263.5	0.0034	H-7→L+1	0.5756
			H-10→L	0.5001			H-6→L	0.3397
19	271.2	0.0001	H-8→L	0.9371	255.7	0.0004	H-8→L	0.9154
20	269.6	0.0004	H-8→L+1	0.9404	254.1	0.0000	H-8→L+1	0.9263

Table S3. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2Br_2]$ (1) at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation. The contribution of the individual excitations is listed if larger than 0.1

n			wB97XD				CAM-B3LYP	
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
1	314.7	0.1859	H-1→L+1	0.4174	334.9	0.1550	H-1→L+1	0.3992
			H→L	0.5372			H→L	0.5636
2	311.8	0.0165	H-1→L	0.4407	332	0.0150	H-1→L	0.4305
			H→L+1	0.5131			H→L+1	0.5313
3	270.2	0.2493	H-7→L+1	0.2113	276.5	0.2167	H-7→L+1	0.1820
			H-6→L	0.2140			H-6→L	0.3198
			H-4→L	0.2091			H-3→L+1	0.2647
	270	0 1 4 7 0	H-2→L+1	0.2144	276 5	0 1 1 5 7		0 1 0 1 7
4	270	0.1470		0.2144	276.5	0.1157		0.1817
				0.2114				0.3030
			H-2→I	0.2022			11 5 7 2	0.2055
5	250.2	0.0003	H-11→I	0.2785	262.6	0.0181	H-11→I+1	0.1170
5	230.2	0.0000	H-11→L+1	0.1621	202.0	0.0101	H-10→L	0.1212
			H-10→L	0.1710			H-7→L+1	0.1087
			H-10→L+1	0.2913			H-2→L	0.3492
6	250.2	0.0003	H-11→L	0.1696	262.3	0.0153	H-11→L	0.1329
			H-11→L+1	0.2883			H-10→L+1	0.1379
			H-10→L	0.2817			H-7→L	0.1270
			H-10→L+1	0.1633			H-5→L	0.1005
							H-2→L+1	0.2509
7	224.5	0.0010	H-7→L+1	0.1530	256.7	0.0008	H-11→L+1	0.3273
			H-3→L	0.4089			H-10→L	0.3293
•		0.0047	H-2→L+1	0.1///	2565	0 000 4	H-2→L	0.2203
8	224.4	0.0017	H-/→L	0.1947	256.5	0.0034	H-11→L	0.2956
			H-b→L+1	0.1102			H-10→L+1	0.2972
			H-2→I	0.2300			11-3-7L	0.1119
9	220.1	0 0008	H-14→I	0.1416	256 1	0 0001	H-5→I	0 2451
5	220.1	0.0000	H-13→L+1	0.1574	230.1	0.0001	H-4→L+1	0.2243
			H-6→L	0.1407			H-3→L	0.1856
			H-5→L+1	0.1243				
			H-4→L	0.1768				
10	219.8	0.0020	H-14→L+1	0.1107	255.7	0.0082	H-5→L+1	0.1517
			H-13→L	0.1245			H-4→L	0.3452
			H-6→L+1	0.1061			H-3→L+1	0.2574
			H-5→L	0.2281				
			H-4→L+1	0.1394				
	240.4		H-3→L+1	0.1143	246.6	0 00 40		0.0004
11	219.4	0.0000	H-14→L+1	0.2843	246.6	0.0040	H-2→L	0.2361
				0.2963				0.4045
12	219.1	0 0012	H-1/I->I	0.1997	246.3	0 0000	H-2→I+1	0.2037
12	215.1	0.0012	H-13→I+1	0.2609	240.5	0.0000	H-1→I	0.3260
			H-5→L+1	0.1967			H→L+1	0.2540
			H-3→L	0.1019				
13	206.1	0.0002	H-3→L+1	0.3482	234.3	0.0104	H-4→L	0.4999
			H-1→L	0.2073			H-3→L+1	0.2990
			H→L+1	0.1383				
14	205.8	0.0084	H-5→L+1	0.1234	234	0.0002	H-4→L+1	0.5805
			H-3→L	0.2433			H-3→L	0.2113
			H-1→L+1	0.2876				
4 -	201 2	0 2470	H→L	0.1682	222.4	0.0010		0 4252
12	201.3	0.2478	⊓-12→L ⊔ 1→L-2	0.1245	232.1	0.0016	⊓-5→L ⊔ 2→L+1	0.4352
			⊓-⊥→L+3 µ→I⊥⁄	0.12/9			⊓-∠→L+⊥ ⊔→I±1	0.1340 0.1277
16	200.8	0 1771	11→L+4 H-1→I+/I	0.1244	231 /	0 0030	117L+1 H-5→1+1	0.1327
10	200.0	0.1//1	H→I+3	0 3278	231.4	0.0050	H-2→I	0 1034
				0.0270			H→L	0.1162
17	199.9	0.2449	H-1→L+3	0.1926	224	0.0030	H-14→L	0.3963
			H→L+2	0.1565			H-13→L+1	0.3940
			H→L+4	0.1443				

18	199.1	0.0385	H-12→L+1	0.1187	224	0.0008	H-14→L+1	0.3935
			H-4→L+1	0.1548			H-13→L	0.3996
19	196.6	0.0007	H-7→L+1	0.1319	212.7	0.0026	H-8→L	0.8221
			H-6→L	0.1114				
			H-4→L	0.2140				
			H-2→L+1	0.2753				
20	196.5	0.0013	H-6→L+1	0.1159	211.5	0.0038	H-8→L+1	0.7869
			H-4→L+1	0.1945				
			H-2→L	0.2014				

Table S4. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2Cl_2]$ at B3LYP/def2-TZVPP
level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation. The
contribution of the individual excitations is listed if larger than 0.1

n	λ, nm	f	electronic states	contribution
1	270 7	0 1025	H-1→L+1	0.1327
T	576.7	0.1055	H→L	0.8484
r	2712	0.0120	H-1→L	0.1848
Z	574.2	0.0129	H→L+1	0.7917
2	256.2	0 0000	H-1→L	0.7972
5	550.2	0.0009	H→L+1	0.1936
л	2512	0 0020	H-1→L+1	0.8506
4	554.2	0.0029	H→L	0.1391
5	308 0	0 0026	H-3→L	0.7981
J	508.5	0.0020	H-2→L+1	0.1233
			H-7→L	0.1006
6	307.9	0.0023	H-3→L+1	0.4314
			H-2→L	0.4180
			H-5→L	0.2113
7	303.8	0.0036	H-3→L+1	0.4188
			H-2→L	0.2767
			H-6→L	0.1769
Q	303 3	0.0112	H-5→L+1	0.1320
0	505.5	0.0112	H-3→L	0.1164
			H-2→L+1	0.5023
٥	294 7	0 0000	H-5→L	0.6665
5	294.7	0.0000	H-3→L+1	0.1370
	293.4		H-6→L	0.2805
10		0.0102	H-5→L+1	0.3886
			H-2→L+1	0.1950
11	291 3	0.0032	H-6→L	0.4731
	231.5		H-5→L+1	0.4199
12	290.3	0.0015	H-6→L+1	0.7943
13	281.7	0.1365	H-4→L	0.8500
1/	270.0	0 0057	H-7→L	0.1421
14	275.5	0.0557	H-4→L+1	0.6768
15	278.6	0.0076	H-7→L	0.6256
15	270.0	0.0070	H-4→L+1	0.2016
16	277 1	0.0571	H-7→L+1	0.7611
10	2//.1	0.0571	H-2→L+1	0.1076
17	271 /	0 0002	98a→L	0.4796
т,	2/1.4	0.0002	99a→L+1	0.4750
19	271 2	0 0006	98a→L+1	0.4537
10	211.3	0.0000	99a→L	0.4957
19	247.3	0.0011	H-8→L	0.9597
20	245.9	0.0004	H-8→L+1	0.9396

Table S5. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2I_2]$ (3) at B3LYP/def2-TZVPP and PBE0/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation. The contribution of the individual excitations is listed if larger than 0.1.

n			B3LYP				PBEO	
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
1	511.0	0.0205	H→L	0.8818	488.1	0.0266	$H \rightarrow L$	0.9814
2	499.3	0.0022	H-1→L	0.8540	452.2	0.0021	$H-1 \rightarrow L$	0.6934
							$H \rightarrow L+1$	0.2137
3	481.9	0.0002	H-2→L	0.8345	449.3	0.0193	$H-1 \rightarrow L$	0.1890
							$H \rightarrow L+1$	0.7710
4	476.0	0.0206	H→L+1	0.8061	437.2	0.0021	$H-2 \rightarrow L$	0.7993
			H-1→L+1	0.1061				
5	469.6	0.0054	H-3→L	0.8271	426.4	0.0033	$H-3 \rightarrow L$	0.7730
							$H-2 \rightarrow L$	0.1087
6	455.1	0.0014	H-4→L	0.9053	414.3	0.0023	$H-4 \rightarrow L$	0.8552
7	446.6	0.0007	H-1→L+1	0.8659	403.9	0.0005	$H-1 \rightarrow L+1$	0.9414
			H→L+1	0.1090				
8	430.7	0.0015	H-2→L+1	0.9573	393.6	0.0051	$H-5 \rightarrow L$	0.6102
							H-2 → L+1	0.3003
9	423.5	0.0057	H-3→L+1	0.9708	388.9	0.0058	$H-5 \rightarrow L$	0.3277
							H-2 → L+1	0.6080
10	417.4	0.0059	H-5→L	0.7558	384.8	0.0123	$H-3 \rightarrow L+1$	0.8929
			H-4→L+1	0.2271				
11	415.4	0.0127	H-4→L+1	0.2222	381.0	0.0181	$H-4 \rightarrow L+1$	0.8573
			H-5→L	0.7570				
12	381.6	0.0279	H-5→L+1	0.9611	361.9	0.0168	$H-5 \rightarrow L+1$	0.8988
13	362.5	0.0034	H-6→L	0.9718	335.7	0.0042	$H-6 \rightarrow L$	0.9682
14	222.0	0 0020		0.0744	208.6	0.0026		0 05 91
14	333.5	0.0029		0.9744	508.0	0.0050		0.9581
15	316.2	0.0040	H-7→L	0.9000	303.1	0.0068	$H-7 \rightarrow L$	0.9325
16	306.9	0.0083	H-9→L	0.3408	291.9	0.0358	$H-8 \rightarrow L$	0.6959
			H-8→L	0.5705			$H-8 \rightarrow L+1$	0.1102
17	302.2	0.0138	H-9→L	0.3800	287.9	0.0042	$H-9 \rightarrow L$	0.7626
			H-8→L+1	0.3944			$H-8 \rightarrow L+1$	0.1510
18	288.2	0.0630	H-8→L+1	0.3890	280.5	0.0675	$H-8 \rightarrow L$	0.1583
			H-9→L	0.1908			$H-8 \rightarrow L+1$	0.3541
			H-8→L	0.1914			H-7 → L+1	0.1907
19	283.7	0.0536	H-7→L+1	0.4870	277.2	0.0746	$H-8 \rightarrow L+1$	0.2828
			H-9→L+1	0.1972			H-7 → L+1	0.5585
			H-8→L+1	0.1500				
20	281.7	0.0386	H-9→L+1	0.6898	268.8	0.0012	$\text{H-11} \rightarrow \text{L+1}$	0.2568
			H-7→L+1	0.1990			H-10 → L+1	0.2333
							$H-9 \rightarrow L+1$	0.2847

Table S6. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnL_2I_2]$ (3) at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation. The contribution of the individual excitations is listed if larger than 0.1

n			wB97XD				CAM-B3LYP	
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
1	400.3	0.0609	$H \rightarrow L$	0.8764	434.9	0.0472	$H \rightarrow L$	0.9001
2	326.5	0.0542	$H-5 \rightarrow L$	0.1495	361.9	0.0124	$H \rightarrow L+1$	0.8766
			$H-5 \rightarrow L+1$	0.3289				
			$H-4 \rightarrow L+1$	0.1633				
3	309.1	0.0149	$H \rightarrow L+1$	0.8698	350.2	0.0425	$H-5 \rightarrow L$	0.2502
4	207.2	0.0502		0 1 2 9 0	244.0	0.0065	$H-5 \rightarrow L+1$	0.3555
4	287.3	0.0592	$H-8 \rightarrow L$ $H1 \rightarrow L$	0.1289	344.8	0.0065	$H-3 \rightarrow L$ $H_{-1} \rightarrow L$	0.2480
			H-3 → I	0.1115				0.3347
			H-1 → L	0.2615				
5	279.5	0.0471	$H-8 \rightarrow L$	0.1406	332.3	0.0021	$H-2 \rightarrow L$	0.5761
			$H-5 \rightarrow L$	0.1870			$H-1 \rightarrow L$	0.1421
			$H-1 \rightarrow L$	0.1351				
6	274.9	0.0291	$H-2 \rightarrow L$	0.4646	321.5	0.0013	$H-3 \rightarrow L$	0.5586
			$H-1 \rightarrow L$	0.1060			$H-2 \rightarrow L$	0.1344
7	271 4	0 1 2 2 0		0 1 1 7 0	212.0	0.0265	$H-1 \rightarrow L$	0.2149
/	2/1.4	0.1239	$\Pi - 7 \rightarrow L$ $H_{-}7 \rightarrow L + 1$	0.1179	313.9	0.0265		0.3095
				0.3890			$H-4 \rightarrow 1$	0.2043
8	264.3	0.0110	H-3 → L	0.2466	305.3	0.0164	H-5 → L	0.3141
-			$H-1 \rightarrow L$	0.3767			$H-4 \rightarrow L$	0.4327
9	258	0.0088	$H-8 \rightarrow L$	0.1489	296.9	0.0125	$H-3 \rightarrow L+1$	0.1072
			$H-5 \rightarrow L$	0.1531			$H-1 \rightarrow L+1$	0.7750
			$H-4 \rightarrow L$	0.2935				
			$H-2 \rightarrow L$	0.1640				
10	251.7	0.0003	$H-11 \rightarrow L$	0.1319	288.2	0.0243	H-3 → L+1	0.6381
			H-11 →L+1	0.5788				
11	2/18 1	0 0030	$H_{-10} \rightarrow L_{+1}$	0.1412	287.1	0.0016	$H_{-}1 \rightarrow 1 \pm 1$	0 2102
11	240.1	0.0055	H-4 → I	0.2418	207.1	0.0010	$H-2 \rightarrow 1+1$	0.6668
			H-3 → L	0.1997				0.0000
12	242.4	0.0017	$H-14 \rightarrow L$	0.1536	280.6	0.0525	$H-8 \rightarrow L$	0.3021
			$H-13 \rightarrow L$	0.2542			$H-7 \rightarrow L$	0.1190
			$H-12 \rightarrow L$	0.1041			$H-6 \rightarrow L$	0.1895
13	240.1	0.0075	$H-3 \rightarrow L+1$	0.1814	279.4	0.0280	$H-8 \rightarrow L$	0.1019
			H-1 → L+1	0.6374			$H-5 \rightarrow L+1$	0.1681
							$H-4 \rightarrow L+1$	0.3650
1/	22/1 8	0.0057	$H_{-}5 \rightarrow I \pm 1$	0 1120	27/ 9	0.0660	$H-2 \rightarrow L+1$ $H7 \rightarrow 1$	0.1058
14	234.0	0.0057	$H-3 \rightarrow I+1$	0.4589	274.5	0.0000	$H-7 \rightarrow 1+1$	0.2895
			$H-1 \rightarrow L+1$	0.1603			$H-6 \rightarrow L$	0.1599
15	233.4	0.0021	$H-4 \rightarrow L+1$	0.4182	270.6	0.0297	$H-8 \rightarrow L$	0.2174
			$H-2 \rightarrow L+1$	0.3532			$H-7 \rightarrow L+1$	0.1190
							$H-6 \rightarrow L$	0.4754
16	230.7	0.0080	$H-6 \rightarrow L$	0.5273	260.7	0.0002	H-11 → L	0.1341
			$H-2 \rightarrow L+1$	0.1145			$H-11 \rightarrow L+1$	0.5264
17	2277	0 0006		0 175 2	256 1	0 0072	$H-10 \rightarrow L+1$	0.1390
17	227.7	0.0006	$H_{-1} \rightarrow I_{+1}$	0.1752	250.1	0.0072	$\Pi - 7 \rightarrow L$ $H_{-}7 \rightarrow L + 1$	0.4187
			$H-3 \rightarrow I+1$	0.1139				0.2035
			$H-2 \rightarrow L+1$	0.1889				
18	226.5	0.0083	$H-7 \rightarrow L$	0.5029	250.2	0.0004	$H-13 \rightarrow L$	0.2128
			$H-7 \rightarrow L+1$	0.1515			$H-12 \rightarrow L$	0.1251
							$H-9 \rightarrow L$	0.2805
							$H-7 \rightarrow L$	0.1208
19	223.3	0.1914	$H-8 \rightarrow L$	0.1601	247.8	0.0022	$H-8 \rightarrow L+1$	0.2501
			$H \rightarrow L+2$	0.3644			H-6 → L+1	0.4740
20	221 6	0 0027	ר → L+4 H_11 → ±1	U.1200	2/10	0 0000	H_2 _ I +1	0 1385
20	221.0	0.0937	$H-8 \rightarrow I+1$	0.2212	241.3	0.0008	$H-6 \rightarrow I+1$	0.3836
			$H \rightarrow L+2$	0.1313				2.0000
					•			

Table S7. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_3L_2(NH_3)_2I_6]$ at B3LYP/def2-TZVPP and PBE0/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation.

n			B3LYP				PBEO	
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
1	688.9	0 0001	нЭг	0.9511	590.9	0 0002	H→L	0.8663
1	000.5	0.0001	11 / 2	0.5511	550.5	0.0002	H→L+1	0.1108
2	657.4	0.0001	H-1→L	0.9596	565.4	0.0002	H-1→L	0.8656
2	6/17	0.0012	H→I+1	0 8/127	560.9	0.0014	H→L	0.1257
5	041.7	0.0012		0.0427	500.5	0.0014	H→L+1	0.7218
4	632.7	0.0013	H-2→L	0.8815	548.7	0.0023	H-2→L	0.8174
			H-3->I	0 7398			H-3→L	0.3648
5	614.6	0.0025	H-1→I+1	0.7398	537.8	0.0034	H-3→L+1	0.1160
			11 1 / 2.1	0.1772			H-1→L+1	0.4296
6	609.7	0 0005	H-3→L	0.2096	532.1	0 0009	H-3→L	0.5109
U	005.7	0.0005	H-1→L+1	0.7621	552.1	0.0005	H-1→L+1	0.4387
7	593.6	0 0038	H-2→I+1	0 9140	522.7	0 0044	H-2→L	0.1193
,	555.0	0.0050	11 2 7 2 1	0.5140	522.7	0.0044	H-2→L+1	0.8213
8	574.5	0.0080	H-3→L+1	0.9391	508.6	0.0071	H-3→L+1	0.8581
9	542.1	0.0022	H-4→L	0.9632	482.5	0.0016	H-4→L	0.8547
							H-6→L	0.6867
10	534.9	0.0007	H-6→L	0.9357	479.3	0.0019	H-5→L	0.2280
			H-7→L	0.3882			H-7→L	0.4341
11	527.6	0.0015	H-5→L	0.5753	475.3	0.0020	H-5→L	0.3653
				0 5407			H-8→L	0.1656
12	516.7	0.0009	H-/→L	0.5107	461.7	0.0013	H-8→L+1	0.1045
			H-5→L	0.3909			H-4→L+1	0.6469
				0.2100			H-7→L	0.4139
13	511.8	0.0010		0.3199	461.3	0.0007	H-6→L	0.1397
			⊓-4→L+1	0.5889			H-5→L	0.3353
14	50/ 3	0 0069	H-8→L	0.5916	1525	0 0018	H_11_I	0 8821
14	504.5	0.0009	H-4→L+1	0.3551	455.5	0.0018		0.0021
15	500.3	0 0003	H-11→I	0 9409	451 7	0 0059	H-8→L	0.6679
15	500.5	0.0005	11 11 / L	0.5405	451.7	0.0055	H-4→L+1	0.2380
16	496.3	0.0076	H-9→L	0.6765	448.5	0.0087	H-9→L	0.5497
		0.007.0	H-5→L+1	0.1985		0.0007	H-5→L+1	0.1435
			H-12→L	0.1256			H-10→I	0.5257
17	490.9	0.0023	H-10→L	0.4425	446.6	0.0053	H-5→L+1	0.2922
			H-5→L+1	0.2931				
			H-10→L	0.3249			H-10→L	0.2295
18	488.7	0.0044	H-9→L	0.2032	441.9	0.0059	H-9→L	0.2381
			H-5→L+1	0.3477			H-5→L+1	0.4064
19	482.4	0.0009	H-8→L+1	0.7543	438	0.0038	H-9→L	0.1401
				0 1 9 0 0			H-8→L+1	0.5081
			H-13→L	0.1800			H-8→L+1	0.2296
20	470	0.0183	□-12→L □ 7_\ 1	0.3700	433.7	0.0288	H-7→L+1	0.3417
				0.1074			H-6→L+1	0.2202
				0.1802				

Table S8. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_3L_2(NH_3)_2I_6]$ at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation.

n			wB97XD				CAM-B3LYP	
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
				0 1 4 1 9			H-13→L+1	0.1098
1	360.4	0.0511		0.1410	400	0.0265	H-5→L+1	0.1514
			11-2-26+1	0.3423			H→L+1	0.2550
							H-14→L	0.1147
2	345.2	0.0707	H-14→L	0.5947	378.9	0.0158	H-2→L+1	0.2727
							H→L+1	0.2321
З	308.7	0 0259	H-5→I	0 3859	377 5	0.0310	H-14→L	0.3217
5	500.7	0.0255	11372	0.0000	577.5	0.0510	H-5→L	0.1261
			H-2→L+1	0.2820			H-14→L	0.1190
4	300	0.0764	H→L+1	0.2628	369.6	0.0279	H-5→L	0.1207
							H→L	0.1975
-	202.4	0 0000	H-8→L+1	0.3671	267.4	0.0044	H-3→L+1	0.3767
5	292.4	0.0033	H-4→L+1	0.2150	367.4	0.0211	H-1→L	0.1324
							H-1→L+1	0.3427
c	201.0	0.0154		0 6222	256.2	0 0007	H-2→L+1	0.3643
0	291.9	0.0154	n-11→r	0.0232	350.2	0.0007		0.1127
								0.1270
7	287.1	0.0196	H-3→L+1	0.3057	25/ 8	0.0047		0.3071
'	207.1	0.0190	H-1→L+1	0.2697	554.0	0.0047	H-6→I	0.1278
			H-7→I	0 1724			H-8->1+1	0.2745
8	282.2	0.0032	H-6→I	0.5320	353.8	0.0083	H-4→I+1	0.3958
			11072	0.5520			H-11→I	0.1575
			H-9→L+1	0.1389			H-6→L	0.1027
9	281	0.0292	H-7→L+1	0.1271	348.5	0.0037	H-2→L	0.1273
•			H-4→L+1	0.1940			H→L	0.2840
							H→L+1	0.1026
			H-20→L	0.1353			H-11→L	0.1293
10	279	0.0924	H-11→L	0.1380	345.5	0.0003	H-3→L+1	0.1534
			H-4→L	0.1147			H-1→L	0.2122
							H-11→L	0.1596
11	274 5	0 0034	H-2→L+1	0.2939	344 1	0 0013	H-3→L+1	0.1753
11	274.5	0.0034	H→L+1	0.2856	544.1	0.0015	H-1→L+1	0.1766
							H→L	0.1339
							H-9→L+1	0.2155
			H-13→L	0.1120			H-7→L+1	0.1416
12	273.1	0.0291	H-10→L	0.2427	340.9	0.0126	H-6→L+1	0.1272
							H-5→L+1	0.1006
				0.4040			H-4→L+1	0.2332
			H-18→L+1	0.1018			H-8→L	0.1003
13	271.2	0.0175		0.1091	338.6	0.0142	H-4→L	0.2205
			H-2→I+1	0.2157			H-1→L	0.2246
			$H_{-18} \rightarrow I_{+1}$	0.1736				
14	269.7	0.0420	H-8→I+1	0.1728	338.1	0.0053	H-4→L	0.4251
	20017	010 .20	H-7→L+1	0.1258	00012	0.0000	H-1→L	0.1424
							H-10→L	0.3879
15	268	0.0010	H-12→L	0.2203	334.1	0.0022	H-5→L	0.1002
			H-4→L	0.1826			H-2→L	0.1651
				0 2215			H-13→L	0.1580
16	265.4	0.0072		0.3215	332.9	0.0017	H-10→L	0.1099
			11-1-21+1	0.5294			H-2→L	0.2534
17	262 5	0 0227	Н-Д→Г	0 3303	330.6	0 0052	H-8→L+1	0.3817
- /	202.5	0.0227	11 7 76	0.0000	330.0	0.0052	H-4→L+1	0.2518
			H-9→I	0.1328			H-13→L	0.1580
18	258.6	0.0018	H-7→L	0.2644	328.7	0.0015	H-12→L	0.1319
-			H→L	0.1459			H-3→L	0.2330
							H-2→L	0.1480
							H-9→L	0.1366
19	257.2	0.0108	H→L	0.3335	326.6	0.0050	H-/→L ⊌ ←→י	0.2399
							⊓-o→L ⊔ ⊑→!	0.1748
							∏-2 - 2	0.1009

			H-14→L+1	0.1208			H-13→L	0.1121
20	257.1	0.0022	H-9→L+1	0.4393	322.5	0.0016	H-12→L	0.2924
			H-7→L+1	0.1961			H-3→L	0.2608

Table S9. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_4L_3(NH_3)_2I_8]$ at B3LYP/def2-TZVPP and PBE0/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation.

n	B3LYP				PBEO			
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
1	856.5	0.0000	H→L	0.9932	699.6	0.0000	H→L	0.9805
2	817.2	0.0001	H-1→L	0.9903	674.6	0.0001	H-1→L	0.9700
3	775.5	0.0008	H-2→L H→L+1	0.8402 0.1296	652.7	0.0025	H-2→L H→L+1	0.1484 0.7042
4	767.6	0.0013	H-2→L H→L+1	0.1490 0.8140	643.4	0.0001	H-2→L H→L+1	0.8168 0.1643
5	742	0.0012	H-3→L H-1→L+1	0.1991 0.7375	633.5	0.0017	H-1→L+1	0.8315
6	735.6	0.0001	H-3→L H-1→L+1	0.7917 0.1973	617.4	0.0001	H-3→L	0.9297
7	709.8	0.0005	H-2→L+1	0.8881	608.5	0.0004	H-2→L+1	0.7465
8	678.5	0.0003	H-4→L	0.9682	582.7	0.0003	H-3→L+1	0.7717
9	676.1	0.0002	H-3→L+1	0.8973	578.4	0.0005	H-4→L	0.9021
10	650.3	0.0001	H-5→L	0.9724	565.5	0.0008	H-2→L+2 H→L+2	0.2715 0.5878
11	640.2	0.0010	H-2→L+2 H→L+2	0.2562 0.6732	556.5	0.0003	H-5→L	0.9042
12	634.1	0.0006	H-4→L+1	0.8991	552.3	0.0007	H-4→L+1	0.8811
13	630.9	0.0015	H-7→L H-6→L	0.1260 0.7912	548.6	0.0069	H-3→L+1 H-3→L+2 H-1→L+2	0.1193 0.1637 0.6122
14	620	0.0010	H-7→L H-6→L	0.8059 0.1231	547.2	0.0036	H-7→L H-6→L	0.2248 0.5995
15	618.2	0.0058	H-3→L+2 H-1→L+2	0.1916 0.7230	536.6	0.0004	H-7→L H-6→L	0.5971 0.2422
16	608.1	0.0005	H-5→L+1	0.9605	531.5	0.0007	H-5→L+1	0.8893
17	589.6	0.0073	H-6→L+1	0.9185	519.3	0.0118	H-6→L+1	0.8698
18	587.1	0.0007	H-2→L+2 H→L+2	0.6757 0.2868	517.9	0.0015	H-2→L+2 H→L+2	0.5556 0.3221
19	579.8	0.0078	H-7→L+1	0.9233	513.9	0.0054	H-7→L+1	0.8568
20	570.5	0.0005	H-8→L	0.8787	511.2	0.0008	H-8→L H-8→L+1	0.7201 0.1520

Table S10. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[Zn_4L_3(NH_3)_2I_8]$ at wB97XD/def2-TZVPP and CAM-B3LYP/def2-TZVPP level: transition wavelength (λ), oscillator strength (f). H is for HOMO, L is for LUMO abbreviation.

n	wB97XD				CAM-B3LYP			
	λ, nm	f	electronic states	contribution	λ, nm	f	electronic states	contribution
			H-13→I+1	0 1445			H-2→L+1	0.1229
1	383.5	0.0177	H-11→I+1	0.2928	431.9	0.0060	H-2→L+2	0.3236
-	565.5	0.0177	H-10→I+1	0.1359	101.0	0.0000	H→L+1	0.1413
			11 10 / 1.1	0.1000			H→L+2	0.2491
			H-8→L+1	0.1650			H-8→L+1	0.1191
2	375.9	0.0653	H-8→L+2	0.2645	427.1	0.0148	H-1→L+1	0.2553
			H-1→L+2	0.1145			H-1→L+2	0.2289
			H-2→L+1	0.1011			H-13→L+1	0.2037
3	351	0.0062	H-2→L+2	0.4356	415.2	0.0304	H-11→L+1	0.1847
			H→L+2	0.2584				0.1115
							$H_8 \rightarrow I+1$	0.1328
			H-21→I	0.2234			H-3→I+1	0.1023
4	348.6	0.0362	H-20→L	0.3685	404.6	0.0011	H-3→L+2	0.2354
				0.0000			H-1→L+2	0.1246
			H-8→L+1	0.1781				0.4067
5	334.3	0.0124	H-3→L+2	0.2910	385.6	0.0055	H-11→L	0.1367
			H-1→L+2	0.2934			H-4→L+1	0.1007
			H-8→L+1	0.1441				0 1020
6	330.5	0.0418	H-8→L+2	0.2652	384.5	0.0063		0.1039
			H-1→L+1	0.1535			11-4-76+1	0.3701
			H-13→L	0.1402			H-8→L+2	0.2599
7	320.1	0.0238	H-11→L	0.2276	384	0.0291	H-4→L+1	0.2084
			H-10→L	0.1893			H-1→L+1	0.1236
			H-6→L+1	0.1022			H-2→L+2	0.1001
8	313.8	0.0149	H-6→L+2	0.1935	380.9	0.0002	H→L	0.4597
			H-4→L+1	0.2107			H→L+1	0.3325
			H-4→L+2	0.2144			11.4 \1	0 1 6 2 7
٩	212.1	0 0342		0 6509	275 1	0 0006	H-1-7L	0.1637
9	512.1	0.0542	11-14-7L	0.0509	575.1	0.0000	11-7L H->1+1	0.3041
							H-21→I	0.3487
10	302.9	0.0163	H-6→L+1	0.1024	373.6	0.0151	H-14→I	0.2005
	002.0	0.0100	H-4→L+1	0.3725		0.0101	H-10→L	0.2412
			H-6→L+1	0.1015				
11	298.9	0.0226	H-5→L+1	0.1802	372.2	0.0073	H-6→L+1	0.2836
			H-5→L+2	0.1682			H-2→L+1	0.2384
			H-15→L	0.2531				0 6202
12	297.4	0.0368	H-11→L	0.1096	370	0.0005	11-1-7℃	0.0292
			H-10→L	0.1911			11 / 2	0.1007
			H-17→L+1	0.1015			H-6→L+1	0.2119
13	294.3	0.0379	H-5→L+1	0.1404	369.3	0.0036	H-5→L+1	0.2808
							H-2→L+1	0.1294
							H-5→L+1	0.1606
14	292.8	0.0260	H→L+1	0.1247	367.7	0.0007	⊓-2-7L H_2-2L+1	0.1007
							H→I+2	0.3925
			H-14→I	0 1006			11 / 21 2	0.1370
15	292.3	0.0276	H-11→I	0.1541	365.2	0.0338	H-21→L	0.2087
	202.0	010270	H-10→L	0.1720	00012	0.0000	H-14→L	0.4521
10	200.2	0.0215		0.1717	250.2	0 0020		0 2774
10	290.2	0.0315	H→L+1	0.1/1/	358.3	0.0038	H-1→[+]	0.2774
17	288.7	0.0025	H-6→L+1	0.2955	357 5	0.0015	H-15→L	0.1049
/	200.7	0.0025	H-4→L+2	0.2169		0.0010	H-10→L	0.1859
			H-7→L+1	0.1630				
18	287.7	0.0013	H-5→L+1	0.1081	356.5	0.0036	H-2→L	0.4432
			H-4→L+2	0.1347				0.4404
10	20E C	0.0396	니 12 스니	0 2607	256	0.0005	H-1U→L ⊔ 7→L+1	0.1101
19	205.0	0.0380	□-13 7 L	0.2087	550	0.0025	ローノフレ+エ H_2ンI	0.1405
							H-4→I+7	0.2009
20	282 7	0.0176	complex	complex	355 1	0.0005	H-3→I	0.1425
_0		0.01,0	complex.	eepiex		0.0000	H-3→L+1	0.3630

Table S11. Calculated properties of the first singlet excited states $S_0 \rightarrow S_n$ of $[ZnLI_2]_n$ (4) with B3LYP functional: transition wavelength (λ), oscillator strength (f). H is for HOCO, L is for LUCO crystalline orbitals abbreviation.

n	λ, nm	f	electronic states	Excitation amplitude	
1	457.0	0.0169	H→L	0.9924	
			H-2→L+1	0.1001	
2	452.2	0.0000	H-1→L	0.9939	
			H→L+2	-0.0512	
3	449.5	0.0000	H→L+1	0.8893	
			H-2→L	0.4521	
4	445.2	0.0000	H-2→L	-0.8826	
			H→L+1	0.4512	
			H-5→L+2	0.0872	
5	444.2	0.0079	H-1→L+1	-0.9880	
			H-3→L	-0.1016	
			H-2→L+2	0.0555	
6	438.2	0.0689	H-2→L+1	0.9774	
			H-5→L	-0.1579	
			H→L	-0.0953	
_			H-4→L+1	-0.0737	
7	431.8	0.0606	H-3→L	-0.9694	
			H-9→L+1	-0.1497	
			H-1→L+1	0.1074	
			H→L+3	0.0863	
			H-/→L+1	0.0539	
			H-10→L+2	0.0506	
8	426.4	0.0000	H-4→L	-0.8243	
			H-5→L+1	-0.50/3	
			H-1→L+3	0.1544	
			H-6→L+1	-0.1106	
			H-12→L	0.859	
			H-/→L+3	0.0724	
0	176 1	0.0004		0.0559	
9	420.1	0.0004		0.0150	
				0.4504	
				0.1045	
			H-12→I+1	-0 1168	
				-0.0956	
			H-7→I+2	-0.0350	
10	121 9	0 0000	H-3→I+1	0.0795	
10	727.5	0.0000	H→I+2	-0 5025	
			H-9→I	0.1692	
			H-2→I+3	0.0669	
			H-4→1+3	-0.0606	
			H-1→I	-0.0582	
			H-10→I+3	-0.0552	
			H-5→I+2	-0.0526	
			H-7→L	-0.0501	

Figure S19. Decomposition of 10 vertical excitation states for $[ZnL_2Br_2]$ (1) in terms of contribution from excitation types. LC – ligand-centered, MLCT – metal-to-ligand charge transfer, LMCT – ligand-to-metal charge transfer, LLCT – ligand-to-ligand charge transfer

Figure S20. Decomposition of 10 vertical excitation states for [ZnL₂I₂] (**3**) in terms of contribution from excitation types. LC – ligand-centered, MLCT – metal-to-ligand charge transfer, LMCT – ligand-to-metal charge transfer, LLCT – ligand-to-ligand charge transfer

Figure S21. Frontier orbitals of $[ZnL_2Br_2]$ (1) (B3LYP/def2-TZVPP, isovalue = 0.03 a.u.). H is for HOMO, L is for LUMO abbreviation

Figure S22. Frontier orbitals of $[ZnL_2Cl_2]$ (B3LYP/def2-TZVPP, isovalue = 0.03 a.u.). H is for HOMO, L is for LUMO abbreviation

Figure S23. Frontier orbitals of $[ZnL_2I_2]$ (**3**) (B3LYP/def2-TZVPP, isovalue = 0.03 a.u.). H is for HOMO, L is for LUMO abbreviation

Figure S24. Frontier orbitals of $[ZnLl_2]_n$ (4). isovalue = 0.03. H is for HOCO, L is for LUCO abbreviation

Figure S25. Frontier molecular orbitals of $[Zn_3L_2(NH_3)_2I_6]$ and $[Zn_4L_3(NH_3)_2I_8]$ calculated at B3LYP/def2TZVPP level (isovalue = 0.03 a.u.). H is for HOMO, L is for LUMO abbreviation

Figure S26. Overlay of optimized geometry of complex $\mathbf{1}$ in the ground state (green) and S_1 state (red).

Figure S27. Overlay of optimized geometry of complex **3** in the ground state (green) and S_1 state (red).

Figure S28. Infrared spectra of polystyrene (PS) (blue), L in PS film (red) and **1** in PS film (black). Bands assigned to NH-vibrations of L are marked with "*", while those assigned to **1** are marked with "+".