Supporting Information

The Solid-state Hierarchy and Iodination Potential of

$[\text{bis}(3\text{-acetaminopyridine})\text{iodine(I)}]\text{PF}_6$

Jas S. Warda*

a University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.

E-mail: james.s.ward@jyu.fi

Contents

Synthesis ... S2

General Considerations ... S2

Preparation and Characterization Details ... S3

Comparison Table of ^{15}N NMR Chemical Shifts .. S7

Reaction of Complex 3 with $^1\text{BuOMe}$... S8

NMR Spectra .. S9

References .. S24
Synthesis

General Considerations

All reagents and solvents were obtained from commercial suppliers and used without further purification. For structural NMR assignments, 1H NMR, 13C NMR, and 1H-15N NMR correlation spectra were recorded on a Bruker Avance III 500 MHz spectrometer at 25°C in CD$_3$CN or CD$_2$Cl$_2$. Chemical shifts are reported on the δ scale in ppm using the residual solvent signal as internal standard (CH$_3$CN in CD$_3$CN: δ$_H$ 1.94, δ$_C$ 1.32/118.26; CH$_2$Cl$_2$ in CD$_2$Cl$_2$: δ$_H$ 5.32, δ$_C$ 53.84), or for 1H-15N NMR spectroscopy, to an external CD$_3$NO$_2$ standard. For the 1H NMR spectroscopy, each resonance was assigned according to the following conventions: chemical shift (δ) measured in ppm, observed multiplicity, observed coupling constant (J Hz), and number of hydrogens. Multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). For the 1H-15N HMBC spectroscopy, spectral windows of 8 ppm (1H) and 300 ppm (15N) were used, with 1024 points in the direct dimension and 512 increments used in the indirect dimension, with subsequent peak shape analysis being performed to give the reported 15N NMR resonances.

The single crystal X-ray data for 2-2(MeCN), 3_1, 3_2, and 4 were collected at 120 K using an Agilent SuperNova dual wavelength diffractometer with an Atlas detector using mirror-monochromated Cu-Kα (λ = 1.54184 Å) radiation. The program CrysAlisPro was used for the data collection and reduction on the SuperNova diffractometers. All structures were solved by intrinsic phasing (SHELXT) and refined by full-matrix least squares on F^2 using Olex2, utilising the SHELXL module. Anisotropic displacement parameters were assigned to non-H atoms and isotropic displacement parameters for all H atoms were constrained to multiples of the equivalent displacement parameters of their parent atoms with $U_{iso}(H) = 1.2 U_{eq}$ (aromatic) or $U_{iso}(H) = 1.5 U_{eq}$ (alkyl) of their respective parent atoms. The X-ray single crystal data and CCDC numbers of all new structures are included below.

The following abbreviations are used: DCM = dichloromethane, MeCN = acetonitrile, TBME = 1-butylmethylether.
Preparation and Characterisation Details

3-acetaminopyridine (1): Ligand 1 was synthesised as previously reported in the literature.\(^5\) \(^1\)H NMR (500 MHz, CD\(_3\)CN) \(\delta\) 8.65 (d, \(J = 2.2\) Hz, 1H), 8.45 (s, br, 1H), 8.26 (dd, \(J = 4.5, 1.0\) Hz, 1H), 8.02 (d, \(J = 8.2\) Hz, 1H), 7.27 (dd, \(J = 8.2, 4.7\) Hz, 1H), 2.08 (s, 3H); \(^{13}\)C NMR (126 MHz, CD\(_3\)CN) \(\delta\) 170.0, 145.4, 141.9, 136.7, 127.1, 124.4, 24.14; \(^{15}\)N NMR (\(^{1}\)H-\(^{15}\)N HMBC, CD\(_3\)CN) \(\delta\) -63.7 (pyridinic), -254.4 (amido).

\([\text{Ag(3-acetaminopyridine)}_2]\text{PF}_6\) (2): A solution (DCM or MeCN; 3.5 mL) of 1 (10.9 mg, 0.08 mmol) was added to an MeCN (0.5 mL) solution of AgPF\(_6\) (10.1 mg, 0.04 mmol), and stirred for 15 minutes to give a colourless solution. All volatiles removed under reduced pressure to leave a white solid. Yield is quantitative. \(^1\)H NMR (500 MHz, CD\(_3\)CN) \(\delta\) 8.78 (d, \(J = 2.1\) Hz, 2H), 8.59 (s, br, 2H), 8.23 (dd, \(J = 4.8, 1.2\) Hz, 2H), 8.02 (d, \(J = 8.3\) Hz, 2H), 7.37 (dd, \(J = 8.3, 4.9\) Hz, 2H), 2.09 (s, 6H); \(^{13}\)C NMR (126 MHz, CD\(_3\)CN) \(\delta\) 170.2, 146.0, 142.5, 137.4, 128.1, 125.2, 24.1; \(^{15}\)N NMR (\(^{1}\)H-\(^{15}\)N HMBC, CD\(_3\)CN) \(\delta\) -85.8 (pyridinic), -254.2 (amido). Crystals suitable for single crystal X-ray diffraction were obtained from a DCM:MeCN (7:1) solution of 2 vapour diffused with pentane. Crystal data for 2: CCDC2193903, \([\text{C}_{18}\text{H}_{22}\text{AgN}_{6}\text{O}_{2}]\text{PF}_6\), \(M = 607.25\), colourless block, \(0.10 \times 0.26 \times 0.38 \text{ mm}^3\), triclinic, space group \(P-1\) (No. 2), \(a = 7.2685(3)\) Å, \(b = 12.4304(6)\) Å, \(c = 14.1913(6)\) Å, \(\alpha = 108.995(4)^\circ\), \(\beta = 101.944(4)^\circ\), \(\gamma = 92.083(4)^\circ\), \(V = 1178.64(10)\) Å\(^3\), \(Z = 2\), \(D_{\text{calc}} = 1.711\) g cm\(^{-3}\), \(F(000) = 608\), \(\mu = 8.20\) mm\(^{-1}\), \(T = 120.0(1)\) K, \(\theta_{\text{max}} = 76.5^\circ\), 4755 total reflections, 4505 with \(I_o > 2\sigma(I_o)\), \(R_{\text{int}} = 0.027\), 4755 data, 317 parameters, no restraints, \(GooF = 1.03\), \(0.54 < d\Delta p < 0.55\) eÅ\(^{-3}\), \(R[F^2 > 2\sigma(F^2)] = 0.028\), \(wR(F^2) = 0.078\).

Figure S1: The X-ray crystal structure of \([\text{Ag(3-acetaminopyridine)}_2]\text{PF}_6\)·2MeCN (PF\(_6\) anion omitted for clarity). Colour key: light grey = silver, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.
[\{(3-acetaminopyridine)\}_2]PF_6 (3): Elemental iodine (10.2 mg, 0.04 mmol) was added as a solid to a solution (either 7:1 DCM:MeCN or neat MeCN; 4 mL) of 2 (21.0 mg, 0.04 mmol) to give a pale orange solution and yellow precipitate (AgI) once all the I\(_2\) had dissolved (~5 minutes). The yellow precipitate was removed by filtration. Yield is quantitative. The pure complex can be isolated by precipitation with petroleum ether, with a minor loss of yield, to give a white solid. \(^1\)H NMR (500 MHz, CD\(_3\)CN) \(\delta\) 9.30 (s, 2H), 8.91 (s.br, 2H), 8.45 (d, \(J = 5.2\) Hz, 2H), 8.12 (dd, \(J = 8.5, 0.7\) Hz, 2H), 7.51 (dd, \(J = 8.3, 5.5\) Hz, 2H), 2.13 (s, 6H); \(^13\)C NMR (126 MHz, CD\(_3\)CN) \(\delta\) 170.6, 144.9, 141.0, 140.1, 131.9, 128.7, 24.1; \(^15\)N NMR (\(^1\)H-\(^15\)N HMBC, CD\(_3\)CN) \(\delta\) -174.5 (pyridinic), -253.5 (amido).

Two crystallographic polymorphs were identified for 3.

Crystals suitable for single crystal X-ray diffraction were obtained from a DCM:MeCN (7:1) solution of 3 vapour diffused with pentane at -20°C. Crystal data for 3_1: CCDC2193904, [C\(_{14}\)H\(_{16}\)IN\(_4\)O\(_2\)]PF\(_6\), M = 544.18, colourless plate, 0.03 \(\times\) 0.31 \(\times\) 0.38 mm\(^3\), triclinic, space group P-1 (No. 2), a = 8.1008(4) Å, b = 10.1196(7) Å, c = 12.4667(6) Å, \(\alpha = 98.710(5)^\circ\), \(\beta = 92.055(4)^\circ\), \(\gamma = 105.936(5)^\circ\), \(V = 968.14(10)\) Å\(^3\), \(Z = 2\), \(D_{calc} = 1.867\) gcm\(^{-3}\), \(F000 = 532\), \(\mu = 14.49\) mm\(^{-1}\), \(T = 200.0(1)\) K (crystals found to catastrophically shatter at temperatures below 200 K), \(\theta_{max} = 76.8^\circ\), 3914 total reflections, 3523 with \(I_o > 2\sigma(I_o)\), \(R_{int} = 0.055\), 3914 data, 289 parameters, 126 restraints, \(\text{Goof} = 1.03\), 2.33 < \(d\Delta\rho < -1.45\) eÅ\(^{-3}\), \(R[F^2 > 2\sigma(F^2)] = 0.061\), \(wR(F^2) = 0.174\).

Figure S2: The X-ray crystal structure of 3_1 (PF\(_6\) anion omitted for clarity). Colour key: purple = iodine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

S4
Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of an MeCN solution of 3.

Crystal data for 3_2: CCDC2193905, [C_{14}H_{16}IN_4O_2]PF_6, M = 544.18, colourless plate, 0.01 × 0.16 × 0.17 mm^3, triclinic, space group P-1 (No. 2), a = 9.9264(3) Å, b = 13.3351(4) Å, c = 14.6878(5) Å, α = 103.504(3)°, β = 99.401(2)°, γ = 90.172(2)°, V = 1863.36(10) Å³, Z = 4, D_{calc} = 1.940 gcm⁻³, F000 = 1064, μ = 15.06 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.6°, 7610 total reflections, 6527 with |I_o| > 2σ(I_o), R_{int} = 0.054, 7610 data, 509 parameters, no restraints, GooF = 1.08, 6.17 < dΔρ < -1.35 eÅ⁻³, R[F^2 > 2σ(F^2)] = 0.056, wR(F^2) = 0.151.
[3-acetamido-1-(1-iodo-2-methylpropan-2-yl)pyridin-1-ium]PF₆ (4): A solution (either 7:1 DCM:MeCN or neat MeCN; 4 mL) of 3 (21.8 mg, 0.04 mmol) was vapour diffused with TBME (16 mL) over 48 hours to give the product as colourless crystals, which were decanted and dried to give a colourless crystalline solid. Yield = 12.0 mg (0.026 mmol, 65%). ¹H NMR (500 MHz, CD₃CN) δ 9.48 (s, 1H), 9.15 (s.br, 1H), 8.53 (d, J = 6.2 Hz, 1H), 8.36 (dd, J = 8.5, 1.1 Hz, 1H), 7.97 (dd, J = 8.2, 6.6 Hz, 1H), 3.82 (s, 2H), 2.19 (s, 3H), 1.94 (s, 6H; overlapping with CH₃CN at 1.94 ppm); ¹³C NMR (126 MHz, CD₃CN) δ 171.1, 140.6, 136.9, 135.2, 132.7, 129.1, 71.8, 27.2, 24.2, 17.1; ¹⁵N NMR (¹H-¹⁵N HMBC, CD₃CN) δ -154.5 (pyridinic), -252.9 (amido).

NMR analyses also performed in CD₂Cl₂ due to the overlap of the residual CH₃CN and water peaks with some of the alkyl resonances when performed in CD₃CN. ¹H NMR (500 MHz, CD₂Cl₂) δ 9.32 (s, 1H), 8.96 (dd, J = 8.6, 1.1 Hz, 1H), 8.92 (s, 1H), 8.27 (d, J = 6.2 Hz, 1H), 7.95 (dd, J = 8.4, 6.4 Hz, 1H), 3.76 (s, 2H), 2.29 (s, 3H), 2.02 (s, 6H); ¹³C NMR (126 MHz, CD₂Cl₂) δ 171.1, 141.2, 135.4, 134.3, 131.9, 128.5, 71.4, 27.7, 27.1, 24.4, 15.8; ¹⁵N NMR (¹H-¹⁵N HMBC, CD₂Cl₂) δ -154.6 (pyridinic), -254.0 (amido).

Crystals suitable for single crystal X-ray diffraction were obtained from a DCM:MeCN (7:1) solution of 3 vapour diffused with TBME. Crystal data for 4: CCDC2193906, [C₁₁H₁₆IN₂O]PF₆, M = 464.13, colourless needle, 0.05 × 0.08 × 0.24 mm³, monoclinic, space group P2₁/c, a = 10.4701(1) Å, b = 14.7904(1) Å, c = 10.5256(1) Å, β = 100.659(1)°, V = 1601.84(2) Å³, Z = 4, Dcalc = 1.925 gcm⁻³, F₀₀₀ = 904, µ = 17.28 mm⁻¹, T = 120.0(1) K, θmax = 76.2°, 3333 total reflections, 3248 with I > 2σ(I), Rint = 0.021, 3333 data, 202 parameters, no restraints, GooF = 1.04, 1.19 < dΔρ < -0.66 eÅ⁻³, R[F²] > 2σ(F²)] = 0.023, wR(F²) = 0.058.

Figure S5: The unit cell packing of 3₁.
Figure S6: The X-ray crystal structure of 4.
Colour key: purple = iodine, orange = phosphorus, lime green = fluorine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

Comparison Table of 15N NMR Chemical Shifts

Table S1: Comparison of the pyridinic and amido 15N NMR chemical shifts (in CD$_3$CN) of complexes 1-4 (in ppm).

<table>
<thead>
<tr>
<th>Complex</th>
<th>Pyridinic nitrogen (δ_N)</th>
<th>Amido nitrogen (δ_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-63.7</td>
<td>-254.4</td>
</tr>
<tr>
<td>2</td>
<td>-85.8</td>
<td>-254.2</td>
</tr>
<tr>
<td>3</td>
<td>-174.5</td>
<td>-253.5</td>
</tr>
<tr>
<td>4</td>
<td>-154.5</td>
<td>-252.9</td>
</tr>
</tbody>
</table>
Reaction of Complex 3 with tBuOMe

Figure S7: A proposed mechanism to explain the observation of complex 4 as the major product upon reaction of complex 3 with tBuOMe, which relies upon the tBuOMe initially reacting with a source of "I" to form 2-methylpropene. The 2-methylpropene goes on to react with a source of I⁺ and a molecule of 1 to form complex 4.
Figure S8: The 1H NMR spectrum of ligand 1 in CD$_3$CN.
Figure S9: The 13C NMR spectrum of ligand 1 in CD$_3$CN.
Figure S10: The 1H-15N HMBC spectrum of ligand 1 in CD$_3$CN.
Figure S11: The 1H NMR spectrum of complex 2 in CD$_3$CN.
Figure S12: The 13C NMR spectrum of complex 2 in CD$_3$CN.
Figure S13: The 1H-15N HMBC spectrum of complex 2 in CD$_3$CN.
Figure S14: The 1H NMR spectrum of complex 3 in CD$_3$CN.
Figure S15: The 13C NMR spectrum of complex 3 in CD$_3$CN.
Figure S16: The 1H-15N HMBC spectrum of complex 3 in CD$_3$CN.
Figure S17: The 2H NMR spectrum of complex 4 in CD$_3$CN.
Figure S18: The 13C NMR spectrum of complex 4 in CD$_3$CN.
Figure S19: The 1H-15N HMBC spectrum of complex 4 in CD$_3$CN.
Figure S20: The 1H NMR spectrum of complex 4 in CD$_2$Cl$_2$.
Figure S21: The 13C NMR spectrum of complex 4 in CD$_2$Cl$_2$.
Figure S22: The 1H-15N HMBC spectrum of complex 4 in CD$_2$Cl$_2$.
References

1 Agilent Technologies Ltd, 2014, CrysAlisPro.

