Supplementary Information

Eight semiconducting MOFs constructed with conjugated ligands and d-metals (Cd, Zn, Co, Ni) serve as functional materials for oxygen evolution reaction, photocatalytic degradation of dyes and

photoluminescence

Yang-Hua Li^a, Yu-Qi Liu^{a*}, Si-Yu Dai ^a, Nan-Hao Jin^{a, b}, Xin-Ying Wang^{a*}, Han Chen^a, Xiao-Ming Liu^a, Yue Zhao^a, Hui-Long Luo^c, Wei Li ^{a, b}

The corresponding formula and calculation method

The Tafel plot can be calculated by the linear Tafel equation:

 $\eta = a \times \log(j) + b$

where *a* is the Tafel slope, *j* and η are the catalytic current density and overpotential, respectively.

The electrochemically active surface area (ECSA) of the MOFs has the following relationship to the electric double layer capacitance:

 $EASA = C_{dl}/C_s$

The electrochemical double layer capacitance (C_{dl}) is calculated by measuring the relevant CV curves at different scan rates (10 to 50 mV/s) in a non-Faraday region. The value of C_{dl} is the slope of the plot of capacitive current as a function of scan rate. The C_s is the specific capacitance of an atomically smooth surface of the material.

The turnover frequency (TOF) value has been measured via equation:

 $TOF = j \times A / (4 \times F \times m / M)$

where *j* is the current density (A cm⁻²) at a given overpotential, *A* is the loading area of the electrode (cm²), *F* is Faraday constant = 96485 (C mol⁻¹), *m* is the mass per square centimeter of the catalyst, and *M* is the molecular weight of the catalyst, respectively.

^c Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650093, P. R. China

^{a*} Corresponding author. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China

E-mail address:liuyuqi7547@163. com (Y. Q. Liu); 1447448766@qq.com(X.Y.Wang)

^a Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China

^b Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China

According to the Kubelka-Munk function (F), the band gap can be calculated by the following equations:

 $F = (1 - R)^2 / 2R$ $(Fhv)^n = B(hv - Eg)$

where *R* is the reflectance of an infinitely thick layer at a given wavelength, *h* is the Plank's constant, *v* is the frequency of light, *Eg* is the optical bandgap energy of the material, and factor *B* depends on the transition probability assumed to be as constant within the optical frequency range, n = 2 or 1/2 represent the direct and indirect transition, respectively.

The degradation efficiency of MO is defined as follows:

Degradation efficiency = $(1-(C_t/C_0)) \times 100\%$

Where C_0 and C_t are the concentrations of MO solution when photocatalytic reaction at time 0 min and t min, respectively.

The graphs associated with the text

Fig. S1 EDS mapping images of MOF 1.

Fig. S2 EDX spectrum of MOF 1.

Fig. S3 EDS mapping images of MOF 2.

Fig. S4 EDX spectrum of MOF 2.

Fig. S5 EDS mapping images of MOF 3.

Fig. S6 EDX spectrum of MOF 3.

Fig. S7 EDS mapping images of MOF 4.

Fig. S8 EDX spectrum of MOF 4.

Fig. S9 EDS mapping images of MOF 5.

Fig. S10 EDX spectrum of MOF 5.

Fig. S11 EDS mapping images of MOF 6.

Fig. S12 EDX spectrum of MOF 6.

Fig. S13 EDS mapping images of MOF 7.

Fig. S15 EDS mapping images of MOF 8.

Fig. S16 EDX spectrum of MOF 8.

Fig. S17 Cyclic voltammetry (CV) curve in a non-Faraday region (a) Corresponds to MOF 4. (b)

Corresponds to MOF 5

Fig. S18 Solid-state excitation spectra of Cd-based and Zn-based MOF.

Fig. S19 Time-dependent UV-Vis absorption spectra of the MO solution with MOF as catalyst.

(a-h) correspond to MOF 1-8.

Fig. S20 Solid-state emission spectrum of 10 mg 1, 2 and 7 excited by 360 nm light source.

The corresponding parameters of crystallographic data, selected bonds, angles and hydrogen bonds

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Identification code	MOF 1	MOF 2	MOF 3	MOF4
Empirical formula	C ₂₂ H ₁₉ CdN ₅ O ₄	C ₃₃ H ₃₁ N ₇ O ₉ Zn	$C_{22}H_{20}CdN_4O_5$	C ₃₁ H ₃₆ Co ₂ N ₄ O ₁₄
Formula weight	529.82	800.39	532.82	806.50
Temperature/K	296.15	296.15	296.15	296.15
Wavelength	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/c	$P2_1/m$	$P2_1/c$	C2/c
Unit cell dimensions	a=1.43795(11) nm, α = 90 ° b=2.0139(15) nm, β =115.4160(10)	a=0.89817(12) nm, α = 90 ° b=2.1696(3) nm, β =114.994(2) °	a=0.59643(4) nm, α = 90 ° b=2.16185(15) nm, β =90.4440(10)	a=1.79346(12) nm, α = 90 ° b=1.44912(9) nm, β =107.8950(10) °
	° c=0.86813(7)nm , γ=90 °	c=1.00342(14) nm, γ=90 °	° c=1.63630(14) nm, γ=90 °	c=2.71194(17) nm, γ=90 °
Volume/nm ³	2.2904(3)	1.7722(4)	2.1098(3)	6.7072(7)
Ζ	4	2	4	8
Calculate density/g/m ³	1.567	1.500	1.677	1.597
Absorption coefficient/mm ⁻¹	0.991	1.416	1.078	1.065
F(000)	1064.0	820.0	1072.0	3328.0
Crystal size/mm ³	0.11 × 0.1 × 0.09	0.11 × 0.1 × 0.08	0.11 × 0.1 × 0.08	$0.11 \times 0.1 \times 0.07$
Theta range for data collection	3.137 ° to 25.01 °	2.502 ° to 25.004 °	1.561 ° to 25.007 °	1.844 ° to 25.013 °
Index range	$-17 \le h \le 17, -20$ $\le k \le 24,$ $-10 \le l \le 10$	$-10 \le h \le 5, -25 \le k \le 25,$ $-11 \le l \le 11$	$-7 \le h \le 7, -25$ $\le k \le 24,$ $-15 \le l \le 19$	$\begin{array}{l} -21 \leq h \leq 21, -12 \leq \\ k \leq 17, \\ -31 \leq l \leq 32 \end{array}$
Reflections collected	5775	9071	10595	16918
Independent reflection	2022 [R(int)= 0.0155, R(sigma) = 0.0162]	3204 [R(int) = 0.0254, R(sigma) = 0.0299]	3699 [R(int) = 0.0162, R(sigma) = 0.0174]	5908 [R(int) = 0.0355, R(sigma) = 0.0493]
Completeness to theta	99.8% (25.010 °)	99.9% (25.004 °)	99.8% (25.007 °)	99.9% (25.008 °)
Max. and min.	0.598 and 0.746	0.502 and 0.746	0.587 and 0.746	0.628 and 0.746

Table S1 Crystallographic Data and Structural Refinements for MOF 1-8

Goodness-of-fit on F ²	1.123	1.299	1.141	1.064
Final R	$R_1 = 0.0340,$	$R_1 = 0.0619,$	$R_1 = 0.0467,$	$R_1 = 0.0325, wR_2 =$
indices[I>2σ(I)]	$wR_2 = 0.1033$	$wR_2 = 0.1311$	$wR_2 = 0.1087$	0.0789
D indoxog (all data)	$R_1 = 0.0373,$	$R_1 = 0.0726,$	$R_1 = 0.0527,$	$R_1 = 0.0455, wR_2 =$
K indexes (an data)	$wR_2 = 0.1094$	$wR_2 = 0.1352$	$wR_2 = 0.1127$	0.0931
Largest diff. peak and hole/e·nm ⁻³	1150 and -370	780 and -450	1260 and -650	340and -320
CCDC number	2183697	2183698	2183700	2183703

Identification code	MOF 5	MOF 6	MOF 7	MOF 8
Empirical formula	C ₃₁ H ₃₅ N ₄ Ni ₂ O ₁₄	$C_{28}H_{28}CdCl_2N_8$	$\mathrm{C}_{15}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{O}_{3}\mathrm{Zn}$	C ₆ H ₁₂ CdO ₁₀
Formula weight	805.05	659.88	363.67	356.56
Temperature/K	296.15	296.15	296.15	296.15
Wavelength	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	triclinic	monoclinic	triclinic
Space group	C2/c	P-1	$P2_1/c$	P-1
Unit cell dimensions	a=1.7789(9) nm, α = 90 ° b=1.4391(8) nm, β =108.934(10) ° c=2.7261(17) nm, γ =90 °	a=0.78796(10) nm, α = 106.732(2) ° b=0.88579(11) nm, β =91.035(2) ° c=1.10989(13) nm, γ =107.410(2) °	a=1.11555(9) nm, α = 90 ° b=8.5094(7) nm, β =103.2480(10)) ° c=1.79223(15) nm, γ =90 °	a=0.6724(4) nm, α = 62.77 ° b=0.9949(6)(11) nm, β =71.873(5) ° c=0.9949(6)(13)n m, γ =71.873(5) °
Volume/nm ³	6.601(6)	0.70326(15)	1.6560(2)	0.5511(5)
Z	8	1	4	2
Calculate density/g/m ³	1.620	1.558	1.459	2.149
Absorption coefficient/mm ⁻¹	1.218	1.000	1.502	2.026
F(000)	3336.0	334.0	744.0	352.0
Crystal size/mm ³	0.09 imes 0.08 imes 0.07	0.11 imes 0.08 imes 0.05	0.11 × 0.1 × 0.09	$0.11 \times 0.1 \times 0.08$
Theta range for data collection	0.79 ° to 25.009 °	1.929 ° to 25.002 °	1.875 ° to 25.009 °	2.575 ° to 24.998 °
	$-19 \le h \le 21, -$	$-9 \le h \le 9, -10$	$-13 \le h \le 8, -10$	$-7 \le h \le 7, -11 \le k$
Index range	$17 \le k \le 16$,	\leq k \leq 10,	\leq k \leq 10,	$\leq 11,$
	$-32 \le l \le 28$	$-9 \le l \le 13$	$-21 \le l \le 20$	$-11 \le l \le 9$
Reflections collected	16424	3629	8221	2675
Independent	5800 [R(int) =	2470 [R(int) =	2922 [R(int) =	1897[R(int) =
a .:	0 0000	0.0245	0.0242	0.0242

	R(sigma) =	R(sigma) =	R(sigma) =	R(sigma) =
	0.1036]	0.0503]	0.0285]	0.0591]
Completeness to	00 1% (25 000 %)	00 5% (25 002%)	100% (25,000 %)	08 1% (21 008%)
theta	99.470 (23.009)	99.570 (25.002)	10070 (23.009-)	98.470 (24.998)
Max. and min. transmission	0.417 and 0.746	0.670 and 0.746	0.848 and 0.874	0.451 and 0.746
Goodness-of-fit on F ²	1.003	1.088	1.149	1.097
Final R	$R_1 = 0.0747,$	$R_1 = 0.0322,$	$R_1 = 0.0333,$	$R_1 = 0.0449,$
indices[I>2o(I)]	$wR_2 = 0.2008$	$wR_2 = 0.0752$	$wR_2 = 0.1118$	$wR_2 = 0.1130$
R indexes (all data)	$R_1 = 0.0948,$ $wR_2 = 0.2260$	$R_1 = 0.0394,$ $wR_2 = 0.0951$	$R_1 = 0.0466,$ $wR_2 = 0.1268$	$R_1 = 0.0480,$ $wR_2 = 0.1149$
Largest diff. peak and hole/ $e \cdot nm^{-3}$	1270 and -2130	400 and -430	310 and -360	2080 and -2090
CCDC number	2183702	2183699	2183704	2183701

Table S2 Selected Bond lengths (nm) and Angles (°) for MOF 1 $\,$

	e v		
Parameter	Value	Parameter	Value
Cd(1)-O(1)	0.2409(3)	Cd(1)-O(2)#1	0.2340(3)
Cd(1)-O(1)#1	0.2409(3)	Cd(1) - N(1)	0.2269(3)
Cd(1)-O(2)	0.2340(3)	Cd(1)-N(1)#1	0.2269(3)
O(1)-Cd(1)-O(1)	109.24(18)	N(1)#1-Cd(1)-O(1)#1	87.00(12)
O(1)#1-Cd(1)-C(1)	27.30(12)	N(1)-Cd(1)-O(1)	87.00(12)
O(1)-Cd(1)-C(1)	27.30(12)	N(1)#1-Cd(1)-O(1)	142.38(12)
O(1)-Cd(1)-C(1)	105.19(12)	N(1)-Cd(1)-O(1)#1	142.37(12)
O(1)#1-Cd(1)-C(1)	105.20(12)	N(1)#1-Cd(1)-O(2)#1	121.13(12)
O(2)-Cd(1)-O(1)	54.55(11)	N(1)-Cd(1)-O(2)#1	91.34(12)
O(2)#1-Cd(1)-O(1)#1	54.55(11)	N(1)-Cd(1)-O(2)	121.13(12)
O(2)#1-Cd(1)-O(1)	95.17(11)	N(1)#1-Cd(1)-O(2)	91.34(12)
O(2)-Cd(1)-O(1)#1	95.17(11)	N(1)#1-Cd(1)-(N1)	100.59(17)
O(2)-Cd(1)-O(2)#1	129.95(16)	N(1)#1-Cd(1)-C(1)	116.78(12)
O(2)#1-Cd(1)-C(1)	115.51(12)	N(1)-Cd(1)-C(1)	103.92(12)
O(2)-Cd(1)-C(1)	27.34(11)	N(1)#1-Cd(1)-C(1)#1	103.92(12)
O(2)-Cd(1)-C(1)#1	115.51(12)	N(1)-Cd(1)-C(1)#1	116.78(12)
O(2)#1-Cd(1)-C(1)#1	27.34(11)	C(1)-Cd(1)-C(1)	114.49(16)

Symmetry code: #1 = 1-x, +y, 1/2-z.

Table S3 Selected Bond ler	ngths (nm) and	Angles (°)	for MOF 2
----------------------------	----------------	------------	-----------

	•	, e ()	
Parameter	Value	Parameter	Value
Zn(1)-O(1)#1	0.1960(4)	Zn(1)-N(1)	0.1997(4)
Zn(1)-O(2)	0.1978(3)	O(1)-Zn(1)#1	0.1960(4)
Zn(1)-O(3)	0.1925(4)		

O(1)#1-Zn(1)-O(2)	114.51(18)	O(3)-Zn(1)-O(1)#1	113.79(18)
O(1)#1-Zn(1)-N(1)	103.08(17)	O(3)-Zn(1)-O(2)	101.92(18)
O(2)-Zn(1)-N(1)	98.67(17)	O(3)-Zn(1)-N(1)	124.3(2)

Symmetry code: #1 = 2-x, 1-y, 1-z.

Table S4 S	elected Bond	lengths (nm)) and Angles	(°) for M	IOF 3

	X 7 1	D	X7 1
Parameter	Value	Parameter	Value
Cd(1)-O(1)#1	0.2528(4)	Cd(1)-N(1)#2	0.2258(4)
Cd(1)-O(1W)	0.2354(3)	Cd(1)-N(4)	0.2269(5)
Cd(1)-O(2)#1	0.2418(4)	O(1)-Cd(1)#3	0.2527(4)
Cd(1)-O(3)	0.2357(4)	O(2)-Cd(1)#3	0.2418(4)
Cd(1)-O(4)	0.2616(4)	N(2)-Cd(1)#4	0.2258(4)
O(1)#1-Cd(1)-O(4)	88.12(12)	N(1)#2-Cd(1)-O(1W)	89.89(15)
O(1W)-Cd(1)-O(1)#1	137.70(12)	N(1)#2-Cd(1)-O(2)#1	86.23(16)
O(1W)-Cd(1)-O(2)#1	85.04(13)	N(1)#2-Cd(1)-O(3)	97.63(15)
O(1W)-Cd(1)-O(3)	82.07(13)	N(1)#2-Cd(1)-O(4)	93.62(14)
O(1W)-Cd(1)-O(4)	134.12(12)	N(1)#2-Cd(1)-N(4)	176.79(19)
O(2)#1-Cd(1)-O(1)#1	52.85(12)	N(4)-Cd(1)-O(1)#1	94.60(17)
O(2)#1-Cd(1)-O(4)	140.83(12)	N(4)-Cd(1)-O(1W)	89.08(16)
O(3)-Cd(1)-O(1)#1	140.22(13)	N(4)-Cd(1)-O(2)#1	90.65(19)
O(3)-Cd(1)-O(2)#1	166.53(13)	N(4)-Cd(1)-O(3)	85.24(18)
O(3)-Cd(1)-O(4)	52.11(12)	N(4)-Cd(1)-O(4)	89.28(18)
N(1)#2-Cd(1)-O(1)#1	84.13(16)		

Symmetry code: #1 = 1-x, -1/2+y, 1/2-z; #2 = 2-x, -1/2+y, 1/2-z; #3=1-x, 1/2+y, 1/2-z; #4 = 2-x, 1/2+Y, 1/2-z.

Parameter	Value	Parameter	Value
Co(1)-O(1W)#1	0.21676(19)	Co(2)-O(2W)	0.2080(2)
Co(1)-O(2)#1	0.21267(18)	Co(2)-O(4)#3	0.20946(19)
Co(1)-O(3)#1	0.20294(19)	Co(2)–O(6)	0.21503(19)
Co(1)-O(5W)	0.2079(2)	Co(2)-N(4)	0.2105(2)
Co(1)-O(8)	0.21325(18)	O(1W)-Co(1)#3	0.21675(19)
Co(1)-N(1)#2	0.2111(2)	O(2)-Co(1)#3	0.21267(18)
Co(2)-O(1)	0.20365(19)	O(4)-Co(1)#1	0.20947(19)
Co(2)-O(1W)	0.21592(19)	N(4)-Co(1)#4	0.2111(2)
O(2)#1-Co(1)-O(1W)#1	91.97(7)	O(1)-Co(2)-O(1W)	90.82(8)
O(2)#1-Co(1)-O(8)	177.93(7)	O(1)-Co(2)-O(2W)	176.92(9)
O(3)-Co(1)-O(1W)#1	90.96(7)	O(1)-Co(2)-O(4)#3	93.05(8)
O(3)-Co(1)-O(2)#1	91.50(8)	O(1)-Co(2)-O(6)	86.85(8)
O(3)-Co(1)-O(5W)	178.43(9)	O(1)-Co(2)-N(4)	88.68(8)
O(3)-Co(1)-O(8)	89.57(8)	O(2W)-Co(2)-O(1W)	89.41(9)
O(3)-Co(1)-N(1)#2	88.76(8)	O(2W)-Co(2)-O(4)#3	83.88(8)

Table S5 Selected Bond lengths (nm) and Angles (°) for MOF 4

O(5W)-Co(1)-O(1W)#1	87.77(8)	O(2W)-Co(2)-O(6)	96.22(8)
O(5W)-Co(1)-O(2)#1	89.46(8)	O(2W)-Co(2)-N(4)	91.32(9)
O(5W)-Co(1)-O(8)	89.52(8)	O(4)#3-Co(2)-O(1W)	93.14(8)
O(5W)-Co(1)-N(1)#2	92.50(9)	O(4)#3-Co(2)-O(6)	178.57(8)
O(8)-Co(1)-O(1W)#1	89.79(7)	O(4)#3-Co(2)-N(4)	91.08(8)
N(1)#2-Co(1)-O(1W)#1	178.99(8)	O(6)-Co(2)-O(1W)	88.29(7)
N(1)#2-Co(1)-O(2)#1	89.01(8)	N(4)-Co(2)-O(1W)	175.77(8)
N(1)#2-Co(1)-O(8)	89.24(8)	N(4)-Co(2)-O(6)	87.49(8)

Symmetry code: #1 = 1/2-x, -1/2+y, 1/2-z; #2 = 3/2-x, -1/2+y, 1/2-z; #3 = 1/2-x, 1/2+y, 1/2-z; #4 = 3/2-x, 1/2+Y, 1/2-z.

Table S6 Selected Bond lengths (nm) and Angles (°) for MOF 5	
--	--

Parameter	Value	Parameter	Value
Ni(1)-O(1W)	0.2042(5)	Ni(2)-O(2W)	0.2100(4)
Ni(1)-O(4)	0.2007(5)	Ni(2)–O(3)	0.2078(4)
Ni(1)-O(6)#1	0.2056(5)	Ni(2)-O(5)#1	0.2012(4)
Ni(1)-O(8)	0.2102(5)	Ni(2)-O(9)	0.2069(5)
Ni(1)-O(9)	0.2152(4)	Ni(2)-N(3)	0.2027(6)
Ni(1)-N(2)	0.2077(5)	O(5)-Ni(2)#2	0.2012(4)
Ni(2)-O(1)	0.2112(4)	O(6)-Ni(1)#1	0.2057(5)
O(1W)-Ni(1)-O(6)#1	84.1(2)	O(2W)-Ni(2)-O(1)	87.79(17)
O(1W)-Ni(1)-O(8)	97.0(2)	O(3)-Ni(2)-O(1)	177.34(15)
O(1W)-Ni(1)-O(9)	89.03(18)	O(3)-Ni(2)-O(2W)	90.39(17)
O(1W)-Ni(1)-N(2)	91.5(2)	O(5)#1-Ni(2)-O(1)	90.04(18)
O(4)-Ni(1)-O(1W)	176.0(2)	O(5)#1-Ni(2)-O(2W)	177.0(2)
O(4)-Ni(1)-O(6)#1	92.0(2)	O(5)#1-Ni(2)-O(3)	91.85(18)
O(4)-Ni(1)-O(8)	86.9(2)	O(5)#1-Ni(2)-O(9)	90.70(18)
O(4)-Ni(1)-O(9)	91.82(17)	O(5)#1-Ni(2)-N(3)	88.6(2)
O(4)-Ni(1)-N(2)	87.9(2)	O(9)-Ni(2)-O(1)	90.40(17)
O(6)#1-Ni(1)-O(8)	177.25(17)	O(9)-Ni(2)-O(2W)	87.29(19)
O(6)#1-Ni(1)-O(9)	93.70(16)	O(9)-Ni(2)-O(3)	91.45(17)
O(6)#1-Ni(1)-N(2)	89.88(19)	N(3)-Ni(2)-O(1)	88.3(2)
O(8)-Ni(1)-Ni(1)-O(9)	88.85(16)	N(3)-Ni(2)-O(2W)	93.4(2)
Ni(2)-Ni(1)-O(9)	87.57(19)	N(3)-Ni(2)-O(3)	89.8(2)
Ni(2)-Ni(1)-O(8)	176.42(19)	N(3)-Ni(2)-O(9)	178.53(19)

Symmetry code: #1 = 1/2-x, 1/2+y, 1/2-z; #2 = 1/2-x, -1/2+y, 1/2-z.

Table S7 Selected Bond lengths	(nm) and Angles (°) for MOF 6
--------------------------------	-------------------------------

Parameter	Value	Parameter	Value
Cd(1)-Cl(1)#1	0.26499(10)	Cd(1)-N(4)#2	0.2374(3)
Cd(1)-Cl(1)	0.26499(10)	Cd(1)-N(4)#3	0.2374(3)
Cd(1)-N(1)	0.2354(3)	N(4)-Cl(1)#4	0.2374(3)
Cd(1)-N(1)#1	0.2354(3)		

Cl(1)-Cd(1)-Cl(1)#1	180.0	N(1)-Cd(1)-N(4)#2	91.61(11)
N(1)#1-Cd(1)-Cl(1)#1	91.90(8)	N(1)#1-Cd(1)-N(4)#3	91.61(11)
N(1)-Cd(1)-Cl(1)	91.90(8)	N(4)#3-Cd(1)-Cl(1)#1	86.73(8)
N(1)-Cd(1)-Cl(1)#1	88.10(8)	N(4)#2-Cd(1)-Cl(1)	86.73(8)
N(1)#1-Cd(1)-Cl(1)	88.10(8)	N(4)#2-Cd(1)-Cl(1)#1	93.27(8)
N(1)-Cd(1)-N(1)#1	180.00(15)	N(4)#3-Cd(1)-Cl(1)	93.27(8)
N(1)#1-Cd(1)-N(4)#2	88.39(11)	N(4)#2-Cd(1)-N(4)#3	180.0
N(1)-Cd(1)-N(4)#3	88.39(11)		

Symmetry code: #1 = 1-x, 1-y, 2-z; #2 = 1-x, 1-y, 1-z; #3 = +x,+y, 1+z; #4 = +x, +y, -1+z.

Table S8 Selected Bond lengths (nm) and Angles (°) for MOF 7

Parameter	Value	Parameter	Value
Zn(1)-O(3)	0.1964(2)	Zn(1)-N(4)#2	0.2004(3)
Zn(1)-O(2)#1	0.1975(3)	O(2)-Zn(1)#3	0.1975(3)
Zn(1)-N(1)	0.1999(3)	N(4)-Zn(1)#4	0.2004(3)
O(3)-Zn(1)-O(2)#1	101.59(10)	O(2)#1-Zn(1)-N(1)#1	112.59(11)
O(3)–Zn(1)–O(1)	108.67(11)	O(2)#1-Zn(1)-N(4)#2	110.22(12)
O(3)-Zn(1)-N(4)#2	101.34(10)	N(1)-Zn(1)-N(4)#2	120.13(12)

Symmetry code: #1 = 2-x, -1/2+y, 3/2-z; #2 = 1+x, 1/2-y, 1/2+z; #3 = 2-x, 1/2+y, 3/2-z; #4 = -1+x, 1/2-y, -1/2+z.

Parameter	Value	Parameter	Value
Cd(1)-O(2)	0.2273(4)	Cd(1)-O(4)#1	0.2382(4)
Cd(1)-O(1W)	0.2285(4)	Cd(1)-O(2W)	0.2321(4)
Cd(1)-O(3W)	0.2277(5)	O(5)-Cd(1)#1	0.2421(4)
Cd(1)-O(1)	0.2585(4)	O(4)-Cd(1)#1	0.2382(4)
Cd(1)-O(5)#1	0.2421(4)		
O(2)-Cd(1)-O(1W)	89.25(14)	O(3W)-Cd(1)-O(1)	84.85(15)
O(2)-Cd(1)-O(3W)	89.13(15)	O(3W)-Cd(1)-O(5)#1	97.45(15)
O(2)-Cd(1)-O(1)	53.32(13)	O(3W)-Cd(1)-O(4)#1	92.05(16)
O(2)-Cd(1)-O(5)#1	83.90(13)	O(3W)-Cd(1)-O(2W)	95.23(15)
O(2)-Cd(1)-O(4)#1	138.12(14)	O(5)#1-Cd(1)-O(1)	137.18(12)
O(2)-Cd(1)-O(2W)	135.27(14)	O(4)#1-Cd(1)-O(1)	168.25(13)
O(1W)-Cd(1)-O(1)	90.66(15)	O(4)#1-Cd(1)-O(5)#1	54.44(13)
O(1W)-Cd(1)-O(5)#1	86.76(15)	O(2W)-Cd(1)-O(1)	82.70(14)
O(1W)-Cd(1)-O(4)#1	92.10(16)	O(2W)-Cd(1)-O(5)#1	138.95(15)
O(1W)-Cd(1)-O(2W)	82.84(15)	O(2W)-Cd(1)-O(4)#1	86.30(15)
O(3W)-Cd(1)-O(1W)	175.31(14)		

TableS9 Selected Bond lengths (nm) and Angles (°) for MOF 8

Symmetry code: #1 = 1+x, 1+y, +z.

D-H…A	D-H	Н…А	[D…A]	∠D-H…A	
C5-H5…N3#1	0.0931(4)	0.2961(10)	0.3616(11)	153.3(4)	
C12-H12···O1#2	0.0930(4)	0.2714(8)	0.3422(14)	133.6(4)	
N3-H3B…O2#3	0.0866(9)	0.2536(3)	0.3240(9)	139.1(7)	
Symmetry code: $\#1 = +x, +y, -1/2z; \#2 = 1/2-x, 3/2-y, -z; \#3 = -1/2+x, -1/2-y, 1/2+z.$					

Table S10 Hydrogen-bonding Geometry of MOF 1 (nm and °)

Table S11 Hydrogen-bonding Geometry of MOF 2 (nm and °)

D-H···A	D-H	Н…А	[D…A]	∠D-H…A
C6-H6…N4#1	0.0930(7)	0.272(4)	0.364(4)	175.3(7)
N3-H3A…O4#2	0.0859(13)	0.2017(8)	0.2772(16)	146.0(9)
C8-H8A…O4#3	0.0970(8)	0.2778(6)	0.3629(10)	146.8(4)
N4-H4B…O3	0.0860(3)	0.2002(5)	0.2590(3)	125.0(2)
C7-H7…N3	0.0930(6)	0.2769(4)	0.3565(6)	144.2(3)
N3-H3B…O1	0.0860(9)	0.1907(4)	0.2558(12)	131.4(10)
C18-H18…O2	0.0960(3)	0.27893)	0.365(3)	112.9(14)

Symmetry code: #1 = 1-x, 1-y, 1-z; #2 = +x, +y, -1+z; #3 = 2-x, 1-y, 2-z.

Table S12 Hydrogen-bonding Geometry of MOF 3 (nm and °)

D-H…A	D-H	Н…А	[D…A]	∠D-H…A
O1W-	0.0879(4)	0.1972(4)	0.2790(5)	154.4(4)
O1W-H1WB…O1#2	0.0878(4)	0.1925(4)	0.2764(5)	158.5(3)
C12-H12B…O3#3	0.0969(8)	0.2605(3)	0.3567(9)	171.9(5)
C19-H12A…O2#4	0.0970(8)	0.2632(5)	0.3555(9)	159.0(6)

Symmetry code: #1 = 1+x, +y, +z; #2 = 2-x, -1/2+y, 1/2-z; #3 = +x, 3/2-y, 1/2+z; #4 = 1+x, 3/2-y, 1/2+z.

Table S13 Hydrogen-bonding Geometry of MOF 4 (nm and °)

D-H…A	D-H	Н…А	[D…A]	∠D-H…A
O1W-H1WA…O5	0.088(3)	0.184(3)	0.2693(3)	163(3)
O1W-H1WB…O7#1	0.086(3)	0.175(2)	0.2602(3)	171(3)
O2W-H1WA…O3W	0.085(2)	0.191(2)	0.2757(4)	175(4)
O2W-H1WB…O7#2	0.0865(3)	0.185(3)	0.2687(3)	167(4)
O3W-	0.0890(5)	0.2070(6)	0.2918(3)	159(5)
O3W-H3WB…O7#1	0.0880(5)	0.2080(5)	0.2905(4)	156(4)
O4W-H1W…O9#2	0.088(4)	0.215(5)	0.3008(4)	166(6)
O4W-H1WB…O3W	0.088(7)	0.202(7)	0.2888(6)	169(5)
O5W-H1WA…O9	0.085(2)	0.198(2)	0.2817(3)	171(3)
O5W-H1WB…O5#4	0.085(3)	0.196(3)	0.2772(3)	160(3)
O9-H9···O2#3	0.0820(3)	0.1978(2)	0.2793(4)	171.9(2)

C3-H3…O4W	0.0930(3)	0.2578(3)	0.3503(4)	172.8(2)
C12-H12···O4W#5	0.0930(3)	0.2545(3)	0.3440(4)	161.7(2)

Symmetry code: #1 = 1/2-x, 1/2+y, 1/2-z; #2 = 1/2-x, 3/2+y, 1/2-z; #3 = 1-x, 2-y, 1-z; #4 = +x, 1-y, -1/2+z; #5 = -1/2x, 1/2+y, -+z.

Table S14	Hydrogen-bonding	Geometry of MOF 5 ((nm and °))
		2	\ / / / / / / / / / / / / / / / / / / /	

D-H···A	D-H	Н…А	[D…A]	∠D-H…A
O1W-H1WA…O4W	0.0854(5)	0.1915(6)	0.2751(8)	165.5(4)
O2W-H2WA…O10#1	0.0960(5)	0.2027(9)	0.2771(10)	132.8(3)
O2W-H2WB…O7#1	0.0961(5)	0.2031(4)	0.2792(5)	134.7(3)
O3W-	0.0850(7)	0.2169(6)	0.2889(8)	142.2(6)
O3W-H1WB…O10	0.0849(9)	0.2101(9)	0.2933(13)	166.7(5)
O4W-H4WA…O2	0.0850(6)	0.2319(5)	0.2935(7)	129.6(5)
O4W-H4WA…O7	0.0849(7)	0.2095(5)	0.2884(9)	154.3(5)
09-Н9…О7	0.086(3)	0.183(2)	0.2669(7)	164(3)
O10-H10···O3	0.0821(7)	0.2051(4)	0.2829(7)	158.2(6)
C7-H7…O3W	0.0931(6)	0.2668(6)	0.3466(9)	144.1(14)
C9-H9…O3W	0.0930(7)	0.2508(7)	0.3406(10)	162.1(4)
C24-H24…O3W#4	0.0930(7)	0.2521(7)	0.3447(10)	173.5(4)
Symmetry adds: $\#1 = x$	$1 x_{1} - 7 + 42 = 1/2 + x_{2}$	$1/2+x_{1}+z_{2}+z_{2}$	$+3 - 1/2 \times 3/2 \times -3 \times \#A$	$ -1/2 \pm x_{x} + 2/2 \pm x_{y}$

Symmetry code: #1 = - x, 1-y, -z; #2 = -1/2+x, -1/2+y, +z; #3 = 1/2-x, 3/2-y, -z; #4 = 1/2+x, 3/2+y, +z.

Table S15	Hvdrogen-bondi	ng Geometry	of MOF 6	(nm and °)
	ing an o'gon o'on an	-g ocomony	011010	(

D-H···A	D-H	Н…А	[D…A]	∠D-H…A
C3-H3···Cl1#1	0.0930(4)	0.2855(11)	0.3683(5)	148.9(3)
C4-H4B…Cl1#1	0.0970(5)	0.2894(10)	0.3800(4)	156.0(3)
C11-H11B…Cl1#2	0.0970(4)	0.2487(11)	0.3640(4)	157.5(3)
C11-H11A…Cl1#3	0.0970(5)	0.2855(12)	0.3792(5)	162.6(3)
C11-H11A…Cl1#4	0.0930(4)	0.2837(12)	0.3430(5)	122.7(3)
~				

Symmetry code: #1 = 1+x, +y, +z; #2 = 1-x, -y, 1-z; #3 = -1/2+x, -1/2-y, 1/2+z; #4 = 1-x, 1-y, 1-z.

Table S16 Hydrogen-bonding Geometry of MOF 7 (nm and °)

D-H···A	D-H	Н…А	[D…A]	∠D-H…A
C3-H3…O2#1	0.0930(32)	0.2346(25)	0.3204(41)	153.1(218)
C10-H10…O1#2	0.0930(37)	0.2603(31)	0.3458(47)	152.9(221)
C12-H12···O1#3	0.0930(37)	0.2580(31)	0.3412(47)	149.2(231)
a 1 11		1/2 . 2/2		1 /0 .

Symmetry code: #1 = +x, -1+y, +z; #2 = 1-x, -1/2+y, 3/2-z; #3 = -1/2+x, -1/2-y, 1/2+z.

Table S17 Hydrogen-bonding Geometry of MOF 8 (nm and °)

D-H···A	D-H	Н…А	[D…A]	∠D-H…A

O1W-	0.0877(4)	0.1895(4)	0.2711(5)	153.9(3)
O1W-H1WB…O2#2	0.0878(3)	0.1997(5)	0.2813(6)	154.2(3)
O2W-	0.0880(6)	0.2114(6)	0.2944(8)	156.8(3)
O2W-H2WB…O1#4	0.0879(4)	0.1949(4)	0.2804(6)	163.8(3)
O3W-H3WA…O4W	0.0589(4)	0.1985(5)	0.2831(6)	168.2(5)
O3W-H3WB…O5#5	0.0984(5)	0.1817(4)	0.2770(6)	162.1(4)
O4W-H4WA…O1#4	0.0850(8)	0.2264(6)	0.2906(9)	132.4(4)
O5W-H5WA…O4W	0.0850(7)	0.1964(7)	0.2785(10)	162.1(4)
O5W-H5WB…O1#6	0.0850(7)	0.2169(7)	0.2915(10)	146.4(3)
C3-H3…O5W#5	0.0929(7)	0.2657(7)	0.3526(10)	155.9(3)
C4-H4…O3W#5	0.0930(5)	0.2588(5)	0.3344(7)	138.7(4)

Symmetry code: #1 = -1+x, 1+y, +z; #2 = -x, 2-y, 1-z; #3 = -1+x, +y, +z; #4 = 1-x, 2-y, -z; #5 = 1-x, 1-y, 1-z; #6 = +x, -1+y, +z.