Supporting Information

Modulating Defective Oxygen of Co-based Crystals by Calcination

Temperature for Improving Catalytic Removal of Propane

Mei Wang,^{a,b} Lei Qi, ^a Xinheng Li *,a,b

^a The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute

of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou,

730000, China.

^b University of Chinese Academy of Sciences, Beijing 100049, China.

Corresponding Author E-mail: xinhengli@licp.cas.cn

Experimental

Catalyst preparation

(1) Preparation of Co₃O₄ crystals

The specific experimental procedure is as follows: 4.5 mmol $Co(NO_3)_2 \cdot 6H_2O$ was dissolved in 50 mL of deionized water, and then 8 mmol of urea and 0.3 mmol of sodium citrate dihydrate were added under constant stirring, followed by stirring for 1 h. The resulting solution was transferred to a PTFE-lined stainless steel autoclave and heated at 180 °C for 1 h. The obtained pink pellet was centrifuged to pH = 7 and lyophilized for 12 h.

(2) Calcination of Co₃O₄

A series of Co_3O_4 catalysts were prepared by calcining the Co_3O_4 precursor in an air atmosphere, the heating rate was 2 °C·min⁻¹, and the calcination time was 4 h.

Catalyst Characterization

Scanning electron microscopy (SEM) images were taken on a Hitachi S4800 scanning electron microscopy. TEM images were obtained using a FEI F20 with an acceleration voltage of 200 kV. Thermogravimetry and derivative thermogravimetry (TG/DTG) was recorded using a Mettler-Toledo TGA/DSC. The sample was heated to 500 °C at a heating rate of 10 °C ·min⁻¹, and the feed gas (air) flow rate was 50 mL ·min⁻¹. Fourier Transform infrared spectroscopy (FTIR) spectroscopy was performed on a Thermo Fisher Scientific Nicolet 6700 spectrometer. X-ray diffraction (XRD) patterns were collected by a Rigaku SmartLab 3 Kw instrument with Cu Ka radiation (40 kV, 30 mA). N₂ physisorption was performed on a Micromeritics ASAP 2020 instrument. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Fisher Scientific NEXSA instrument. Raman spectra in the range of 100~1500 cm⁻¹ were obtained on a confocal microprobe raman spectroscopy (LabRAM HR Evolution, HORIBA Jobin Yvon). O₂ temperature-programmed desorption (O₂-TPD), CO₂ temperature-programmed desorption (CO₂-TPD), and H₂ temperature-programmed reduction (H₂-TPR) were measured using a Xiangen TP-5080 instrument. For TPD, each catalyst was first pretreated under He atmosphere at 180 °C for 30 min to remove moisture. Next, the system was purged with He for 2 h and cooled to room temperature before chemisorption.

After adsorbing O_2 or CO_2 at 50 °C for 30 min, it was heated to 700 °C at a rate of 10 °C·min⁻¹ under He flow. For H₂-TPR, each sample was pretreated at 180 °C for 1 h under an Ar atmosphere, and then heated to 700 °C at a rate of 10 °C·min⁻¹ under a 10% H₂/ Ar flow rate.

Catalyst activity test

The catalytic combustion reaction was carried out in a continuous flow microreactor consisting of a quartz tube with an inner diameter of 4 mm and a height of 400 mm. 0.1g of catalyst particles (40-60 mesh) were placed in the quartz tube reactor, and both ends of the catalyst were blocked with quartz wool. A reaction gas containing 1000 ppm propane (air as balance gas) was passed through the reactor at a flow rate of 50 mL·min⁻¹ and the WHSV of 30,000 mL·g_{cat}⁻¹·h⁻¹. Effluent gases were analyzed online using a gas chromatograph (SHIMADZU GC-2014C) equipped with a FID flame ionization detector. Catalytic activity was measured in the range of 50–250 °C. Propane conversion is calculated using Equation 1:

$$X_{C_{3}H_{8}} = \frac{[C_{3}H_{8}]_{in} - [C_{3}H_{8}]_{out}}{[C_{3}H_{8}]_{in}}$$
(1)

where $[C_3H_8]_{in}$ and $[C_3H_8]_{out}$ represent the import and export concentrations of propane, respectively.

The reaction rate (mmol mg⁻¹ h⁻¹) is calculated according to Equation (2):

$$r_{C_{3}H_{8}} = \frac{10^{3} \cdot 3600 \cdot X_{C_{3}H_{8}} \cdot V_{C_{3}H_{8}}}{W_{cat}}$$
(2)

where W_{cat} represents the catalyst mass and $V_{C_{3}H_{8}}$ represents the gas flow rate of $C_{3}H_{8}$ (mol s⁻¹). The reaction activation energy (Ea) was calculated by Equation (3):

$$\ln r_{C_3H_8} = -\frac{Ea}{RT} + \ln A$$
(3)

where $r_{C_3H_8}$ represents the propane reaction rate, Ea represents the reaction activation energy (kJ mol⁻¹), R represents the gas constant (J mol⁻¹ K⁻¹), and T represents the reaction temperature (K). The stability testing of the catalyst was performed at 180°C.

Fig. S1 The SEM and low-magnification TEM of Co-450. Scale bars are 5µm and 100 nm.

Fig. S2 (a)TG/DTG profile of the cobalt oxide precursors. (b) FTIR of the Co_3O_4

precursors and the Co₃O₄ catalysts calcinated at different temperatures.

Fig. S3 Raman of the Co₃O₄ catalysts calcinated at different temperatures.

Fig. S4 Local magnification of H₂-TPR profiles of catalysts calcined at different temperatures.

Fig. S5 (a) Co 2p and (b) O 1s XPS spectra of the Co-200 catalysts before and after the

reaction.

Fig. S6 Raman spectra of the Co-200 catalysts before and after the reaction.

Samples	SSA (m^2 / g)	Average pore diameter (nm)
Co-200	176.08	2.2
Co-250	219.32	2.3
Co-300	127.29	3.7
Co-350	41.88	8.8
Co-450	21.19	46.7

Table S1 SSA and average pore diameter of the Co₃O₄ catalysts.

Table S2. Surface element analysis of the Co₃O₄ catalysts calcined at different temperatures.

Samples	Co ³⁺ /Co ²⁺	$O_V(\%)^a$
Co-200	0.35	67.2
Co-300	0.50	54.0
Co-450	0.61	52.6

 $*aO_V(\%)=O_V/(O_V+O_L)$

Table S3 Catalytic activity of the Co₃O₄ catalysts for propane oxidation.

Samples	T ₅₀ (°C)	T ₉₀ (°C)
Co-200	147	170
Co-250	161	177
Co-300	167	183
Co-350	179	197
Co-450	194	216

Sample	Reaction conditions	WHSV ^a	$T_{50}{}^{\rm b}$	$T_{90}{}^{b}$	Dof
		$(mL \cdot g_{cat}^{-1} \cdot h^{-1})$	(°C)	(°C)	Kel.
Co-200	1000 ppm C ₃ H ₈ + Air	30,000	147	170	This
					work
Co ₃ O ₄ -R	2500 ppm C ₃ H ₈ + Air	30,000	170	195	[1]
Co ₃ O ₄ -S	900 ppm C ₃ H ₈ + Air	30,000	203	210	[2]
CoO-Co ₃ O ₄	3000 ppm C_3H_8 + Air	30,000	214	235	[3]
$Co_2Ce_1O_x$	800 ppm $C_3H_8 + 10\% O_2$	90,000	215	249	[4]
Co ₃ O ₄	2500 ppm $C_3H_8 + 10\% O_2$	120,000	225	241	[5]
Co ₃ O ₄ /ZSM-5	2000 ppm $C_3H_8 + 2\%O_2$	30,000	235	260	[6]
1.5%Ru/CeO ₂	2000 ppm $C_3H_8 + 2\%O_2$	30,000	170	190	[7]
0.5%Pt/BN	2000 ppm $C_3H_8 + 2\%O_2$	80,000	260	340	[8]
5%Ru-	200 mm C H + Air	60.000	150	200	[0]
Mo/Al ₂ O ₃	$\delta 00 \text{ ppm } C_3 H_8 + \text{Air}$	60,000	150	200	[9]
1%Pt/AlF ₃	2000 ppm $C_3H_8 + 2\%O_2$	80,000	230	290	[10]

Table S4 Comparison of some catalysts reported in the literature for propane oxidation.

^a Weight hourly space velocity; ^b Temperatures at which 50% and 90% conversion of propane.

References

[1] Y.F. Jian, M.J. Tian, C. He, J.C. Xiong, Z.Y. Jiang, H. Jin, L.R. Zheng, R. Albilali and J.W. Shi, *Appl. Catal. B-Environ.*, 2021, **283**, 119657.

[2] K. Chen, W.Z. Li, Z.A. Zhou, Q.F. Huang, Y. Liu and Q.Y. Duan, *Catal. Sci. Technol.*, 2020, **10**, 2573-2582.

[3] Z. Liu, L.J. Cheng, J. Zeng, X. Hu, S.Y. Zhangxue, S.L. Yuan, Q.F. Bo, B. Zhang and Y. Jiang, *Chem. Phys.*, 2021, **540**, 110984.

[4] S. Zhang, S.J. Liu, X.C. Zhu, Y. Yang, W.S. Hu, H.T. Zhao, R.Y. Qu, C.H. Zheng and X. Gao, *Appl. Surf. Sci.*, 2019, 479, 1132-1140.

[5] W.X. Tang, J.F. Weng, X.X. Lu, L.Y. Wen, A. Suburamanian, C.Y. Nam and P.X.
 Gao, *Appl. Catal. B-Environ.*, 2019, **256**, 117859.

[6] Z.Z. Zhu, G.Z. Lu, Z.G. Zhang, Y. Guo, Y.L. Guo and Y.Q. Wang, *Acs Catal.*, 2013, 3, 1154-1164.

[7] Z. Hu, Z. Wang, Y. Guo, L. Wang, Y.L. Guo, J.S. Zhang and W.C. Zhan, *Environ. Sci. Technol.*, 2018, **52**, 9531-9541.

[8] Y.R. Liu, X. Li, W.M. Liao, A.P. Jia, Y.J. Wang, M.F. Luo and J.Q. Lu, *Acs Catal.*, 2019, 9, 1472-1481.

[9] K. Adamska, J. Okal and W. Tylus, *Appl. Catal. B-Environ.*, 2019, 246, 180-194.
[10]X. Li, Y.R. Liu, W.M. Liao, A.P. Jia, Y.J. Wang, J.Q. Lu and M.F. Luo, *Appl. Surf. Sci.*, 2019, 475, 524-531.