Supporting Information

Materials and Methods

All the reagents to perform synthesis obtained from commercial sources were of analytical grade and used without further purification. Powder X-ray diffraction (PXRD) data were collected using Bruker ADVANCE X-ray diffractometer with Cu $\mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA)$ at $50 \mathrm{kV}, 20 \mathrm{~mA}$ with a scanning rate of $6^{\circ} / \mathrm{min}$ and a step size of 0.02°. Fourier transforms infrared (FT-IR) spectrum for $\mathbf{1}$ in KBr disc was recorded on Nicolet Impact 750 FTIR in the range of $400-4000 \mathrm{~cm}^{-1}$. Thermogravimetric analysis (TGA) was performed under nitrogen atmosphere from room temperature to $800{ }^{\circ} \mathrm{C}$ at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The photocatalytic investigations were carried out using Shimadzu UV-Vis 2501PC recording spectrophotometer.

X-ray Crystallography

The single crystal X-ray diffraction data for 1-2 was collected using Bruker SMART APEX diffractometer equipped with graphite monochromated $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073 \AA$) employing ω-scan technique. The structure was solved by direct method (SHLEXS-2014) and refined using the full-matrix least-square procedure based on F^{2} (Shelxl-2014). All the hydrogen atoms were generated geometrically and refined isotropically employing riding model while non-hydrogen atoms were refined with anisotropic displacement parameters. Crystallographic details and selected bond dimensions for 1-2 are listed in Tables S1-S3, respectively. CCDC number: 2183494-2183495.

Photocatalytic Method

The finely divided powder of $\mathbf{1}$ or 2 (40 mg) was dispersed in 50 mL aqueous solutions of MB, MO and $\mathrm{Rh} \mathrm{B}(10 \mathrm{mg} / \mathrm{L})$ and the mixtures were stirred in dark for 30 \min to ensure the establishment of adsorption-desorption equilibrium. The photocatalytic degradations of dyes were conducted on UV-400 type photochemical reactor having 100 W mercury lamp (mean wavelength 365 nm). Aliquots of 5.0 mL were isolated at specified time intervals and separated through centrifugation and then subsequently the intensity of UV-Vis bands of dyes were recorded using UV-visible
spectrophotometer. These control experiments were also conducted where the photodecompositions of dyes were performed under the identical conditions without adding $\mathbf{1}$ and $\mathbf{2}$.

The electrochemical measurements were performed in an electrochemical workstation (CHI660C Apparatuses) with a three electrode system, including a saturated calomel reference electrode, a platinum auxiliary electrode and a glassy carbon disk electrode (GCE, 3 mm). Samples and 0.5 mL DMF were well mixed into a 5 mL centrifuge tube to form a uniform suspension under sonificatio. $5.0 \mu \mathrm{~L}$ Samples $\mathbf{1 / 2}$ suspension was coated on the GCE surface to prepare a working electrode. $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution was used as the electrolyte in the all electrochemical measurements. EIS plots were recorded under dark circumstance at open circuit potential in the frequency range between 10^{-2} and $10^{5} \mathrm{~Hz}$. The ozone gas $(30 \mathrm{mg} / \mathrm{L}, 25 \mathrm{~mL} / \mathrm{min})$ was inlet into the $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution for 30 min if needed. The Mott-Schottky measurement was conducted to measure the band positions of the samples using impedance-potential model.
(a)

(b)

Scheme S1 view of the different coordination mode of $\mathrm{H}_{3} \mathrm{~L}$ in this work.

Fig. S1 view of the $\left[\mathrm{Cd}_{7}(\mathrm{COO})_{12}\right]$ node.

Fig. S2 view of the connections of the adjacent $\left[\mathrm{Cd}_{7}(\mathrm{COO})_{12}\right]$ nodes.

Fig.S3 the 3D supramolecular nework.

Fig. S4 view of the a trimeric $\left[\mathrm{Cd}_{3}(\mathrm{COO}) 6\right] \mathrm{SBU}$ in 2.

Fig. S5 view of the 2D layer in 2.

Fig. S6 view of the TGA.

Fig. S7 view of the PXRD patterns of as-synthesized and after photocatalysis of MV in 1.

Fig. S8 the PXRD pattern of as-synthesized sample in 2.

Fig. S9 view of the IR.

Fig. S10 UV-vis spectrum of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S11 view of the photocatalytic efficiency of MOFs $\mathbf{1}$ and $\mathbf{2}$.

Fig. S12 the appearance of SEM before and after the catalytic experiment.

Fig. S13 Time-dependent UV-vis absorption spectra of $\mathbf{1}+\mathbf{A O}$ in MV solution.

Fig. S14 Time-dependent UV-vis absorption spectra of $\mathbf{1}+\mathbf{B Q}$ in MV solution.

Fig. S15 Time-dependent UV-vis absorption spectra of $\mathbf{1}+\mathbf{T B A}$ in MV solution.

Table S1 view of the photocatalytic efficiencies of $\mathbf{1}$ and $\mathbf{2}$.

	Blank	1	2
MB	11.58%	76.4%	63.2%
MO	18.98%	31.28%	23.86%
MV	28.92%	95.5%	86.28%
	18.91%	27.13%	29.32%

Table S2 The fitting parameters of photocatalytic process

Material	$k\left(\mathrm{~min}^{-1}\right)$	R^{2}
$1+$ MB	0.01174	0.99288
1+MO	0.00326	0.98976
1+MV	0.02288	0.98436
1+RhB	0.00230	0.97677
AO+MV@1	0.03210	0.98691
BQ+MV@1	0.00866	0.97020
TBA+MV@1	0.03016	0.98797
2+MB	0.00860	0.98008
2+MO	0.00221	0.98863

Table S3. Crystallographic data and structure refinement details for 1-2

Parameter	$\mathbf{1}$	$\mathbf{2}$
Formula	$\mathrm{C}_{90} \mathrm{H}_{80} \mathrm{Cd}_{7} \mathrm{~N}_{12} \mathrm{O}_{34}$	$\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{Cd}_{3} \mathrm{~N}_{8} \mathrm{O}_{14}$
Formula weight	2660.46	1344.17
Crystal system	Monoclinic	Monoclinic
Space group	$P 21 / n$	$P 21 / c$
Crystal Color	Colorless	Colorless
a, \AA	$11.0799(7)$	$12.6780(12)$
b, \AA	$20.0518(14)$	$17.8838(17)$
c, \AA	$21.6998(14)$	$11.3101(11)$
$\alpha,{ }^{\circ}$	90	90
$\beta,{ }^{\circ}$	$102.557(1)$	$101.053(2)$
$\gamma,{ }^{\circ}$	90	90
V, \AA^{3}	$4705.8(5)$	$2516.8(4)$
Z	2	2
$\rho_{\text {calcd }}{ }^{\circ}, \mathrm{g} / \mathrm{cm}^{3}$	1.878	1.774
μ, mm ${ }^{-1}$	1.644	1.333
$F(000)$	2624	1340
θ Range, deg	$1.4-27.7$	$1.6-27.7$
Reflection Collected	28422	14986
Independent reflections $\left(R_{\text {int }}\right)$	0.051	0.029
Reflections with $I>2 \sigma(I)$	7719	4724
Number of parameters	661	351
$R_{1}, w R_{2}(I>2 \sigma(I))^{*}$	$0.0547,0.1364$	$0.0411,0.0905$
$R_{1}, w R_{2}(\text { all data })^{* *}$	$0.0865,0.1586$	

[^0]Table S4. Selected bond distances (\AA) and angles (deg) for 1-2

1			
$\mathrm{Cd}(1)-\mathrm{O}(1)$	$2.198(5)$	$\mathrm{Cd}(1)-\mathrm{O}(14)$	2.224(4)
$\mathrm{Cd}(1)-\mathrm{O}(15)$	$2.216(4)$	$\mathrm{Cd}(1)-\mathrm{O}(5) \# 5$	$2.255(5)$
$\mathrm{Cd}(1)-\mathrm{O}(9) \# 5$	2.245(6)	$\mathrm{Cd}(2)-\mathrm{O}(12)$	$2.300(4)$
$\mathrm{Cd}(2)-\mathrm{O}(15)$	2.220(4)	$\mathrm{Cd}(2)-\mathrm{O}(16)$	$2.382(7)$
$\mathrm{Cd}(2)-\mathrm{O}(12) \# 4$	$2.300(4)$	$\mathrm{Cd}(2)-\mathrm{O}(15) \# 4$	2.220(4)
$\mathrm{Cd}(2)-\mathrm{O}(16) \# 4$	$2.382(7)$	$\mathrm{Cd}(3)-\mathrm{O}(4)$	2.251(5)
$\mathrm{Cd}(3)-\mathrm{N}(1)$	2.257(7)	$\mathrm{Cd}(3)-\mathrm{O}(11) \# 2$	$2.347(5)$
$\mathrm{Cd}(3)-\mathrm{O}(12) \# 2$	2.538(4)	$\mathrm{Cd}(3)-\mathrm{O}(2) \# 6$	$2.308(5)$
$\mathrm{Cd}(3)-\mathrm{O}(15) \# 6$	$2.315(5)$	$\mathrm{Cd}(4)-\mathrm{O}(17)$	$2.365(4)$
$\mathrm{Cd}(4)-\mathrm{N}(4)$	$2.276(7)$	$\mathrm{Cd}(4)-\mathrm{N}(5)$	2.272(7)
$\mathrm{Cd}(4)-\mathrm{O}(13) \# 1$	2.412(4)	$\mathrm{Cd}(4)-\mathrm{O}(14) \# 1$	2.511(4)
$\mathrm{Cd}(4)-\mathrm{O}(6) \# 3$	$2.317(4)$	$\mathrm{Cd}(4)-\mathrm{O}(7) \# 3$	2.577(4)
2			
$\mathrm{Cd}(1)-\mathrm{O}(4)$	2.274(3)	$\mathrm{Cd}(1)-\mathrm{N}(1)$	2.293(2)
$\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	2.680(3)	$\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	2.326(2)
$\mathrm{Cd}(1)-\mathrm{N}(4) \# 1$	$2.336(3)$	$\mathrm{Cd}(1)-\mathrm{O}(6) \# 2$	2.582(3)
$\mathrm{Cd}(1)-\mathrm{O}(7) \# 2$	$2.395(3)$	$\mathrm{Cd}(2)-\mathrm{O}(5)$	2.214(2)
$\mathrm{Cd}(2)-\mathrm{O}(2) \# 1$	2.287(2)	$\mathrm{Cd}(2)-\mathrm{O}(6) \# 2$	2.329(2)
$\mathrm{Cd}(2)-\mathrm{O}(5) \# 3$	2.214(2)	$\mathrm{Cd}(2)-\mathrm{O}(2) \# 4$	2.287(2)
$\mathrm{Cd}(2)-\mathrm{O}(6) \# 5$	2.329(2)		

$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(14)$	$87.93(17)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(1) 5$	$95.3(2)$	
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(5) \# 5$	$88.71(19)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(9) \# 5$	$170.2(2)$	
$\mathrm{O}(14)-\mathrm{Cd}(1)-\mathrm{O}(1) 5$	$137.33(16)$	$\mathrm{O}(5) \# 5-\mathrm{Cd}(1)-\mathrm{O}(14)$	$124.71(18)$	
$\mathrm{O}(9) \# 5-\mathrm{Cd}(1)-\mathrm{O}(14)$	$86.9(2)$	$\mathrm{O}(5) \# 5-\mathrm{Cd}(1)-\mathrm{O}(1) 5$	$97.93(19)$	
$\mathrm{O}(9) \# 5-\mathrm{Cd}(1)-\mathrm{O}(15)$	$94.2(2)$	$\mathrm{O}(5) \# 5-\mathrm{Cd}(1)-\mathrm{O}(9) \# 5$	$87.5(2)$	
$\mathrm{O}(12)-\mathrm{Cd}(2)-\mathrm{O}(15)$	$97.67(16)$	$\mathrm{O}(12)-\mathrm{Cd}(2)-\mathrm{O}(16)$	$85.39(19)$	
$\mathrm{O}(12)-\mathrm{Cd}(2)-\mathrm{O}(12) \# 4$	180.00	$\mathrm{O}(12)-\mathrm{Cd}(2)-\mathrm{O}(15) \# 4$	$82.33(16)$	
$\mathrm{O}(12)-\mathrm{Cd}(2)-\mathrm{O}(16) \# 4$	$94.61(19)$	$\mathrm{O}(15)-\mathrm{Cd}(2)-\mathrm{O}(16)$	$81.6(2)$	
$\mathrm{O}(12) \# 4-\mathrm{Cd}(2)-\mathrm{O}(15)$	$82.33(16)$	$\mathrm{O}(15)-\mathrm{Cd}(2)-\mathrm{O}(15) \# 4$	180.00	
$\mathrm{O}(15)-\mathrm{Cd}(2)-\mathrm{O}(16) \# 4$	$98.4(2)$	$\mathrm{O}(12) \# 4-\mathrm{Cd}(2)-\mathrm{O}(16)$	$94.61(19)$	
$\mathrm{O}(15) \# 4-\mathrm{Cd}(2)-\mathrm{O}(16)$	$98.4(2)$	$\mathrm{O}(16)-\mathrm{Cd}(2)-\mathrm{O}(16) \# 4$	180.00	
$\mathrm{O}(12) \# 4-\mathrm{Cd}(2)-\mathrm{O}(15) \# 4$	$97.67(16)$	$\mathrm{O}(12) \# 4-\mathrm{Cd}(2)-\mathrm{O}(16) \# 4$	$85.39(19)$	
$\mathrm{O}(15) \# 4-\mathrm{Cd}(2)-\mathrm{O}(16) \# 4$	$81.6(2)$	$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{N}(1)$	$95.2(2)$	
$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{O}(11) \# 2$	$84.11(18)$	$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{O}(12) \# 2$	$136.31(18)$	
$\mathrm{O}(2) \# 6-\mathrm{Cd}(3)-\mathrm{O}(4)$	$126.3(2)$	$\mathrm{O}(4)-\mathrm{Cd}(3)-\mathrm{O}(15) \# 6$	$98.6(2)$	
$\mathrm{O}(11) \# 2-\mathrm{Cd}(3)-\mathrm{N}(1)$	$96.9(2)$	$\mathrm{O}(12) \# 2-\mathrm{Cd}(3)-\mathrm{N}(1)$	$99.32(18)$	
$\mathrm{O}(2) \# 6-\mathrm{Cd}(3)-\mathrm{N}(1)$	$83.4(2)$	$\mathrm{O}(15) \# 6-\mathrm{Cd}(3)-\mathrm{N}(1)$	$164.4(2)$	
$\mathrm{O}(11) \# 2-\mathrm{Cd}(3)-\mathrm{O}(12) \# 2$	$53.46(14)$	$\mathrm{O}(2) \# 6-\mathrm{Cd}(3)-\mathrm{O}(11) \# 2$	$149.58(18)$	
$\mathrm{O}(11) \# 2-\mathrm{Cd}(3)-\mathrm{O}(15) \# 6$	$91.71(17)$	$\mathrm{O}(2) \# 6-\mathrm{Cd}(3)-\mathrm{O}(12) \# 2$	$96.33(18)$	

$\mathrm{O}(12) \# 2-\mathrm{Cd}(3)-\mathrm{O}(15) \# 6$	$75.48(14)$	$\mathrm{O}(2) \# 6-\mathrm{Cd}(3)-\mathrm{O}(15) \# 6$	$82.57(18)$
$\mathrm{O}(17)-\mathrm{Cd}(4)-\mathrm{N}(4)$	$86.3(2)$	$\mathrm{O}(17)-\mathrm{Cd}(4)-\mathrm{N}(5)$	$88.6(2)$
$\mathrm{O}(13) \# 1-\mathrm{Cd}(4)-\mathrm{O}(17)$	136.49	$\mathrm{O}(14) \# 1-\mathrm{Cd}(4)-\mathrm{O}(17)$	$83.63(18)$
$\mathrm{O}(6) \# 3-\mathrm{Cd}(4)-\mathrm{O}(17)$	$135.21(18)$	$\mathrm{O}(7) \# 3-\mathrm{Cd}(4)-\mathrm{O}(17)$	$84.71(18)$
$\mathrm{N}(4)-\mathrm{Cd}(4)-\mathrm{N}(5)$	$171.3(2)$	$\mathrm{O}(13) \# 1-\mathrm{Cd}(4)-\mathrm{N}(4)$	$90.6(2)$
$\mathrm{O}(14) \# 1-\mathrm{Cd}(4)-\mathrm{N}(4)$	$86.06(18)$	$\mathrm{O}(6) \# 3-\mathrm{Cd}(4)-\mathrm{N}(4)$	$86.6(2)$
$\mathrm{O}(7) \# 3-\mathrm{Cd}(4)-\mathrm{N}(4)$	$99.3(2)$	$\mathrm{O}(13) \# 1-\mathrm{Cd}(4)-\mathrm{N}(5)$	$88.3(2)$
$\mathrm{O}(14) \# 1-\mathrm{Cd}(4)-\mathrm{N}(5)$	$86.41(18)$	$\mathrm{O}(6) \# 3-\mathrm{Cd}(4)-\mathrm{N}(5)$	$102.0(2)$
$\mathrm{O}(7) \# 3-\mathrm{Cd}(4)-\mathrm{N}(5)$	$87.1(2)$	$\mathrm{O}(13) \# 1-\mathrm{Cd}(4)-\mathrm{O}(14) \# 1$	$52.86(14)$
$\mathrm{O}(6) \# 3-\mathrm{Cd}(4)-\mathrm{O}(13) \# 1$	$87.73(15)$	$\mathrm{O}(7) \# 3-\mathrm{Cd}(4)-\mathrm{O}(13) \# 1$	$138.40(14)$
$\mathrm{O}(6) \# 3-\mathrm{Cd}(4)-\mathrm{O}(14) \# 1$	$139.74(14)$	$\mathrm{O}(7) \# 3-\mathrm{Cd}(4)-\mathrm{O}(14) \# 1$	$166.80(14)$
$\mathrm{O}(6) \# 3-\mathrm{Cd}(4)-\mathrm{O}(7) \# 3$	$53.12(14)$		
		$\mathrm{O}(2) \# 1-\mathrm{Cd}(2)-\mathrm{O}(2) \# 4$	180.00
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{N}(1)$	$80.73(9)$	$\mathrm{O}(2) \# 1-\mathrm{Cd}(2)-\mathrm{O}(6) \# 5$	$104.29(8)$
$\mathrm{O}(1) \# 1-\mathrm{Cd}(1)-\mathrm{O}(4)$	$85.33(8)$	$\mathrm{O}(5) \# 3-\mathrm{Cd}(2)-\mathrm{O}(6) \# 2$	$84.92(8)$
$\mathrm{O}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(4)$	$88.08(8)$	$\mathrm{O}(6) \# 2-\mathrm{Cd}(2)-\mathrm{O}(6) \# 2$	$104.29(8) \# 5$
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{N}(4) \# 1$	$162.22(9)$	$\mathrm{O}(2) \# 4-\mathrm{Cd}(2)-\mathrm{O}(5) \# 3$	180.00
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(6) \# 2$	$81.54(8)$	$\mathrm{O}(5) \# 3-\mathrm{Cd}(2)-\mathrm{O}(6) \# 5$	$95.08(8)$
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(7) \# 2$	$108.40(9)$	$\mathrm{O}(2) \# 4-\mathrm{Cd}(2)-\mathrm{O}(6) \# 5$	$75.71(8)$
$\mathrm{O}(1) \# 1-\mathrm{Cd}(1)-\mathrm{N}(1)$	$103.72(9)$	$\mathrm{O}(6) \# 2-\mathrm{Cd}(1)-\mathrm{N}(1)$	$130.13(8)$
$\mathrm{O}(2) \# 1-\mathrm{Cd}(1)-\mathrm{N}(1)$	$154.00(9)$	$\mathrm{O}(1) \# 1-\mathrm{Cd}(1)-\mathrm{O}(2) \# 1$	$51.68(8)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(4) \# 1$	$99.84(9)$	$\mathrm{O}(1) \# 1-\mathrm{Cd}(1)-\mathrm{O}(6) \# 2$	$120.75(7)$
$\mathrm{O}(7) \# 2-\mathrm{Cd}(1)-\mathrm{N}(1)$	$91.26(9)$		
$\mathrm{O}(1) \# 1-\mathrm{Cd}(1)-\mathrm{N}(4) \# 1$	$77.24(9)$		

Symmetry Codes: For 1: $\# 1=2+x, y, z ; \# 2=-1 / 2-x, 1 / 2+y, 1 / 2-z ; \# 3=3 / 2-x, 1 / 2+y, 1 / 2-$ $z ; \# 4=-1-x, 1-y, 1-z ; \# 5=-1 / 2+x, 3 / 2-y, 1 / 2+z ; \# 6=1 / 2+x, 3 / 2-y,-1 / 2+z$. For 2 : $\# 1=x, y$, $-1+z ; \# 2=1-x, 1 / 2+y, 1 / 2-z ; \# 3=1-x, 1-y,-z ; \# 4=1-x, 1-y, 1-z ; \# 5=x, 1 / 2-y,-1 / 2+z$.

[^0]: * $R=\sum\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right) / \sum\left(\mathrm{F}_{\mathrm{o}}\right),{ }^{* *} w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{O}(2)}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \sum\left(F_{\mathrm{O}(2)}\right)^{2}\right\}^{1 / 2}$.

