Supporting Information

Materials and Methods

All the reagents to perform synthesis obtained from commercial sources were of analytical grade and used without further purification. Powder X-ray diffraction (PXRD) data were collected using Bruker ADVANCE X-ray diffractometer with Cu-K α radiation (λ =1.5418 Å) at 50 kV, 20 mA with a scanning rate of 6°/min and a step size of 0.02°. Fourier transforms infrared (FT-IR) spectrum for 1 in KBr disc was recorded on Nicolet Impact 750 FTIR in the range of 400-4000 cm⁻¹. Thermogravimetric analysis (TGA) was performed under nitrogen atmosphere from room temperature to 800 °C at a heating rate of 10 °C min⁻¹. The photocatalytic investigations were carried out using Shimadzu UV-Vis 2501PC recording spectrophotometer.

X-ray Crystallography

The single crystal X-ray diffraction data for 1-2 was collected using Bruker SMART APEX diffractometer equipped with graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) employing ω -scan technique. The structure was solved by direct method (SHLEXS-2014) and refined using the full-matrix least-square procedure based on F^2 (Shelx1-2014). All the hydrogen atoms were generated geometrically and refined isotropically employing riding model while non-hydrogen atoms were refined with anisotropic displacement parameters. Crystallographic details and selected bond dimensions for 1-2 are listed in Tables S1-S3, respectively. CCDC number: 2183494-2183495.

Photocatalytic Method

The finely divided powder of **1** or **2** (40 mg) was dispersed in 50 mL aqueous solutions of MB, MO and Rh B (10 mg/L) and the mixtures were stirred in dark for 30 min to ensure the establishment of adsorption-desorption equilibrium. The photocatalytic degradations of dyes were conducted on UV-400 type photochemical reactor having 100 W mercury lamp (mean wavelength 365 nm). Aliquots of 5.0 mL were isolated at specified time intervals and separated through centrifugation and then subsequently the intensity of UV-Vis bands of dyes were recorded using UV–visible

spectrophotometer. These control experiments were also conducted where the photodecompositions of dyes were performed under the identical conditions without adding 1 and 2.

The electrochemical measurements were performed in an electrochemical workstation (CHI660C Apparatuses) with a three electrode system, including a saturated calomel reference electrode, a platinum auxiliary electrode and a glassy carbon disk electrode (GCE, 3 mm). Samples and 0.5 mL DMF were well mixed into a 5 mL centrifuge tube to form a uniform suspension under sonificatio. 5.0 μ L Samples 1/2 suspension was coated on the GCE surface to prepare a working electrode. 0.2 M Na₂SO₄ solution was used as the electrolyte in the all electrochemical measurements. EIS plots were recorded under dark circumstance at open circuit potential in the frequency range between 10⁻² and 10⁵ Hz. The ozone gas (30 mg/L, 25 mL/min) was inlet into the Na₂SO₄ solution for 30 min if needed. The Mott-Schottky measurement was conducted to measure the band positions of the samples using impedance-potential model.

Scheme S1 view of the different coordination mode of H₃L in this work.

Fig. S2 view of the connections of the adjacent $[Cd_7(COO)_{12}]$ nodes.

Fig.S3 the 3D supramolecular nework.

Fig. S4 view of the a trimeric $[Cd_3(COO)6]$ SBU in **2**.

Fig. S5 view of the 2D layer in 2.

Fig. S6 view of the TGA.

Fig. S7 view of the PXRD patterns of as-synthesized and after photocatalysis of MV in **1**.

Fig. S8 the PXRD pattern of as-synthesized sample in 2.

Fig. S12 the appearance of SEM before and after the catalytic experiment.

Fig. S13 Time-dependent UV-vis absorption spectra of **1**+**AO** in MV solution.

Fig. S14 Time-dependent UV-vis absorption spectra of 1+BQ in MV solution.

Fig. S15 Time-dependent UV-vis absorption spectra of 1+TBA in MV solution.

	Blank	1	2
MB	11.58%	76.4 %	63.2 %
МО	18.98%	31.28 %	23.86%
MV	28.92%	95.5 %	86.28 %
RhB	18.91%	27.13 %	29.32 %

Table S1 view of the photocatalytic efficiencies of 1 and 2.

 Table S2
 The fitting parameters of photocatalytic process

Material	k (min ⁻¹)	R^2	
1+MB	0.01174	0.99288	
1+MO	0.00326	0.98976	
1+MV	0.02288	0.98436	
1+RhB	0.00230	0.97677	
AO+MV@1	0.03210	0.98691	
BQ+MV@1	0.00866	0.99522	
TBA+MV@1	0.03016	0.97020	
2+MB	0.00860	0.98797	
2+MO	0.00221	0.98008	
2+MV	0.02215	0.98863	

Parameter	1	2.
Formula		
	$C_{90}H_{80}Cu_{71}N_{12}O_{34}$	$C_{52}H_{46}Cu_{3}N_{8}O_{14}$
Formula weight	2660.46	1344.17
Crystal system	Monoclinic	Monoclinic
Space group	P21/n	<i>P21/c</i>
Crystal Color	Colorless	Colorless
<i>a</i> , Å	11.0799(7)	12.6780(12)
<i>b</i> , Å	20.0518(14)	17.8838(17)
<i>c</i> , Å	21.6998(14)	11.3101(11)
<i>α</i> , °	90	90
β , °	102.557(1)	101.053(2)
γ, °	90	90
<i>V</i> , Å ³	4705.8(5)	2516.8(4)
Ζ	2	2
$\rho_{calcd}, g/cm^3$	1.878	1.774
μ , mm ⁻¹	1.644	1.333
<i>F</i> (000)	2624	1340
θ Range, deg	1.4-27.7	1.6-27.7
Reflection Collected	28422	14986
Independent reflections (R_{int})	0.051	0.029
Reflections with $I > 2\sigma(I)$	7719	4724
Number of parameters	661	351
$R_1, wR_2 (I > 2\sigma(I))^*$	0.0547, 0.1364	0.0295, 0.0768
R_1 , wR_2 (all data) ^{**}	0.0865, 0.1586	0.0411, 0.0905

* $R = \sum (F_{\rm o} - F_{\rm c}) / \sum (F_{\rm o})$, ** $wR_2 = \{ \sum [w(F_{{\rm O}(2)} - F_{\rm c}^2)^2] / \sum (F_{{\rm O}(2)})^2 \}^{1/2}$.

1 abie 54. 500	ected bolid distances ((A) allu aligies (ueg) ioi 1-2	1
	1		
Cd(1)-O(1)	2.198(5)	Cd(1)-O(14)	2.224(4)
Cd(1)-O(15)	2.216(4)	Cd(1)-O(5)#5	2.255(5)
Cd(1)-O(9)#5	2.245(6)	Cd(2)-O(12)	2.300(4)
Cd(2)-O(15)	2.220(4)	Cd(2)-O(16)	2.382(7)
Cd(2)-O(12)#4	2.300(4)	Cd(2)-O(15)#4	2.220(4)
Cd(2)-O(16)#4	2.382(7)	Cd(3)-O(4)	2.251(5)
Cd(3)-N(1)	2.257(7)	Cd(3)-O(11)#2	2.347(5)
Cd(3)-O(12)#2	2.538(4)	Cd(3)-O(2)#6	2.308(5)
Cd(3)-O(15)#6	2.315(5)	Cd(4)-O(17)	2.365(4)
Cd(4)-N(4)	2.276(7)	Cd(4)-N(5)	2.272(7)
Cd(4)-O(13)#1	2.412(4)	Cd(4)-O(14)#1	2.511(4)
Cd(4)-O(6)#3	2.317(4)	Cd(4)-O(7)#3	2.577(4)
	2		
Cd(1)-O(4)	2.274(3)	Cd(1)-N(1)	2.293(2)
Cd(1)-O(1)#1	2.680(3)	Cd(1)-O(2)#1	2.326(2)
Cd(1)-N(4)#1	2.336(3)	Cd(1)-O(6)#2	2.582(3)
Cd(1)-O(7)#2	2.395(3)	Cd(2)-O(5)	2.214(2)
Cd(2)-O(2)#1	2.287(2)	Cd(2)-O(6)#2	2.329(2)
Cd(2)-O(5)#3	2.214(2)	Cd(2)-O(2)#4	2.287(2)
Cd(2)-O(6)#5	2.329(2)		
	1		
O(1)-Cd(1)-O(14)	87.93(17)	O(1)-Cd(1)-O(1)5	95.3(2)
O(1)-Cd(1)-O(5)#5	88.71(19)	O(1)-Cd(1)-O(9)#5	170.2(2)
O(14)-Cd(1)-O(1)5	137.33(16)	O(5)#5-Cd(1)-O(14)	124.71(18)
O(9)#5-Cd(1)-O(14)	86.9(2)	O(5)#5-Cd(1)-O(1)5	97.93(19)
O(9)#5-Cd(1)-O(15)	94.2(2)	O(5)#5-Cd(1)-O(9)#5	87.5(2)
O(12)-Cd(2)-O(15)	97.67(16)	O(12)-Cd(2)-O(16)	85.39(19)
O(12)-Cd(2)-O(12)#4	180.00	O(12)-Cd(2)-O(15)#4	82.33(16)
O(12)-Cd(2)-O(16)#4	94.61(19)	O(15)-Cd(2)-O(16)	81.6(2)
O(12)#4-Cd(2)-O(15)	82.33(16)	O(15)-Cd(2)-O(15)#4	180.00
O(15)-Cd(2)-O(16)#4	98.4(2)	O(12)#4-Cd(2)-O(16)	94.61(19)
O(15)#4-Cd(2)-O(16)	98.4(2)	O(16)-Cd(2)-O(16)#4	180.00
O(12)#4-Cd(2)-O(15)#4	97.67(16)	O(12)#4-Cd(2)-O(16)#4	85.39(19)
O(15)#4-Cd(2)-O(16)#4	81.6(2)	O(4) - Cd(3) - N(1)	95.2(2)
O(4) -Cd(3)-O(11)#2	84.11(18)	O(4) -Cd(3)-O(12)#2	136.31(18)
O(2)#6-Cd(3)-O(4)	126.3(2)	O(4) -Cd(3)-O(15)#6	98.6(2)
O(11)#2-Cd(3)-N(1)	96.9(2)	O(12)#2-Cd(3)-N(1)	99.32(18)
O(2)#6-Cd(3)-N(1)	83.4(2)	O(15)#6-Cd(3)-N(1)	164.4(2)
O(11)#2-Cd(3)-O(12)#2	53.46(14)	O(2)#6-Cd(3)-O(11)#2	149.58(18)
O(11)#2-Cd(3)-O(15)#6	91.71(17)	O(2)#6-Cd(3)-O(12)#2	96.33(18)

Table S4. Selected bond distances (Å) and angles (deg) for 1-2

O(12)#2-Cd(3)-O(15)#6	75.48(14)	O(2)#6-Cd(3)-O(15)#6	82.57(18)
O(17)-Cd(4)-N(4)	86.3(2)	O(17)-Cd(4)-N(5)	88.6(2)
O(13)#1-Cd(4)-O(17)	136.49	O(14)#1-Cd(4)-O(17)	83.63(18)
O(6)#3-Cd(4) -O(17)	135.21(18)	O(7)#3-Cd(4) -O(17)	84.71(18)
N(4)-Cd(4)-N(5)	171.3(2)	O(13)#1-Cd(4) -N(4)	90.6(2)
O(14)#1-Cd(4) -N(4)	86.06(18)	O(6)#3-Cd(4) -N(4)	86.6(2)
O(7)#3-Cd(4) -N(4)	99.3(2)	O(13)#1-Cd(4) -N(5)	88.3(2)
O(14)#1-Cd(4) -N(5)	86.41(18)	O(6)#3-Cd(4)-N(5)	102.0(2)
O(7)#3-Cd(4)-N(5)	87.1(2)	O(13)#1-Cd(4)-O(14)#1	52.86(14)
O(6)#3-Cd(4)-O(13)#1	87.73(15)	O(7)#3-Cd(4)-O(13)#1	138.40(14)
O(6)#3-Cd(4)-O(14)#1	139.74(14)	O(7)#3-Cd(4)-O(14)#1	166.80(14)
O(6)#3-Cd(4)-O(7)#3	53.12(14)		
	2		
O(4)-Cd(1)-N(1)	2 80.73(9)	O(2)#1-Cd(2)-O(2)#4	180.00
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4)	2 80.73(9) 85.33(8)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5	180.00 104.29(8)
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4)	2 80.73(9) 85.33(8) 88.08(8)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2	180.00 104.29(8) 84.92(8)
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4) O(4)-Cd(1)-N(4)#1	2 80.73(9) 85.33(8) 88.08(8) 162.22(9)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2 O(2)#4-Cd(2)-O(6)#2	180.00 104.29(8) 84.92(8) 104.29(8)
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4) O(4)-Cd(1)-N(4)#1 O(4)-Cd(1)-O(6)#2	2 80.73(9) 85.33(8) 88.08(8) 162.22(9) 81.54(8)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2 O(2)#4-Cd(2)-O(6)#2 O(6)#2-Cd(2)-O(6)#5	180.00 104.29(8) 84.92(8) 104.29(8) 180.00
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4) O(4)-Cd(1)-N(4)#1 O(4)-Cd(1)-O(6)#2 O(4)-Cd(1)-O(7)#2	2 80.73(9) 85.33(8) 88.08(8) 162.22(9) 81.54(8) 108.40(9)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2 O(2)#4-Cd(2)-O(6)#2 O(6)#2-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(5)#3	180.00 104.29(8) 84.92(8) 104.29(8) 180.00 90.91(9)
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4) O(4)-Cd(1)-N(4)#1 O(4)-Cd(1)-O(6)#2 O(4)-Cd(1)-O(7)#2 O(1)#1-Cd(1)-N(1)	2 80.73(9) 85.33(8) 88.08(8) 162.22(9) 81.54(8) 108.40(9) 103.72(9)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2 O(2)#4-Cd(2)-O(6)#2 O(6)#2-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(5)#3 O(5)#3-Cd(2)-O(6)#5	180.00 104.29(8) 84.92(8) 104.29(8) 180.00 90.91(9) 95.08(8)
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4) O(4)-Cd(1)-N(4)#1 O(4)-Cd(1)-O(6)#2 O(4)-Cd(1)-O(7)#2 O(1)#1-Cd(1)-N(1) O(2)#1-Cd(1)-N(1)	2 80.73(9) 85.33(8) 88.08(8) 162.22(9) 81.54(8) 108.40(9) 103.72(9) 154.00(9)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2 O(2)#4-Cd(2)-O(6)#2 O(6)#2-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#5	180.00 104.29(8) 84.92(8) 104.29(8) 180.00 90.91(9) 95.08(8) 75.71(8)
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4) O(4)-Cd(1)-N(4)#1 O(4)-Cd(1)-O(6)#2 O(4)-Cd(1)-O(7)#2 O(1)#1-Cd(1)-N(1) O(2)#1-Cd(1)-N(1) N(1)-Cd(1)-N(4)#1	2 80.73(9) 85.33(8) 88.08(8) 162.22(9) 81.54(8) 108.40(9) 103.72(9) 154.00(9) 99.84(9)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2 O(2)#4-Cd(2)-O(6)#2 O(6)#2-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(6)#5 O(6)#2-Cd(1)-N(1)	180.00 104.29(8) 84.92(8) 104.29(8) 180.00 90.91(9) 95.08(8) 75.71(8) 130.13(8)
O(4)-Cd(1)-N(1) O(1)#1-Cd(1)-O(4) O(2)#1-Cd(1)-O(4) O(4)-Cd(1)-N(4)#1 O(4)-Cd(1)-O(6)#2 O(4)-Cd(1)-O(7)#2 O(1)#1-Cd(1)-N(1) O(2)#1-Cd(1)-N(1) N(1)-Cd(1)-N(4)#1 O(7)#2-Cd(1)-N(1)	2 80.73(9) 85.33(8) 88.08(8) 162.22(9) 81.54(8) 108.40(9) 103.72(9) 154.00(9) 99.84(9) 91.26(9)	O(2)#1-Cd(2)-O(2)#4 O(2)#1-Cd(2)-O(6)#5 O(5)#3-Cd(2)-O(6)#2 O(2)#4-Cd(2)-O(6)#2 O(6)#2-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(6)#5 O(2)#4-Cd(2)-O(6)#5 O(6)#2-Cd(1)-N(1) O(1)#1-Cd(1)-O(2)#1	180.00 104.29(8) 84.92(8) 104.29(8) 180.00 90.91(9) 95.08(8) 75.71(8) 130.13(8) 51.68(8)

Symmetry Codes: **For 1**: #1= 2+x, y, z; #2= -1/2-x,1/2+y,1/2-z; #3= 3/2-x,1/2+y,1/2-z; #4= -1-x,1-y,1-z; #5= -1/2+x,3/2-y,1/2+z; #6= 1/2+x,3/2-y,-1/2+z. **For 2**: #1 = x, y, -1+z; #2 = 1-x, 1/2+y, 1/2-z; #3 = 1-x, 1-y, -z; #4 = 1-x, 1-y, 1-z; #5 = x, 1/2-y, -1/2+z.