Crystal structures of 5-bromo-1-arylpyrazoles and their halogen bonding features

Marcel Mirel Popa,^a Sergiu Shova,^{b,c} Mihaela Dascalu,^c Mino R. Caira,^d Florea Dumitrascu^a

^a"C.D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
^bNingbo University of Technology, No.55-155, Cui Bai Road, Ningbo City, Zhejiang, 315016, China
^cPetru Poni" Institute for Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi, Romania
^dDepartment of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

Contents

I. X-ray crystallography	2
2. Hirshfeld analysis	6

1. X-ray crystallography

Table 1S. Bond distances (Å) and angles (•) for compounds 1-5

Comp	ound 1	Com	pound 2	Comp	ound 3	Comp	ound 4	Comp	ound 5
Br1-C7	1.843(4)	Br1-C8	1.846(9)	Br1-C9	1.856(3)	Br1-C10	1.855(4)	Br1-C4	1.906(4)
F1-C4	1.361(4)	Cl1-C5	1.728(12)	O1-C12	1.194(4)	O1-C13	1.193(4)	Br2-C10	1.855(4)
O1-C10	1.203(4)	O1-C11	1.188(12)	O2-C12	1.325(4)	O2-C13	1.326(4)	O1-C13	1.191(5)
O2-C10	1.324(5)	O2-C11	1.333(11)	O2-C13	1.443(4)	O2-C14	1.453(4)	O2-C13	1.327(5)
O2-C11	1.448(5)	O2-C12	1.429(12)	O3-C14	1.179(4)	O3-C15	1.194(4)	O2-C14	1.451(4)
O3-C12	1.200(4)	O3-C13	1.186(12)	O4-C14	1.322(4)	O4-C15	1.329(4)	O3-C15	1.199(5)
O4-C12	1.314(4)	O4-C13	1.325(13)	O4-C15	1.447(4)	O4-C16	1.443(4)	O4-C15	1.332(5)
O4-C13	1.449(4)	O4-C14	1.452(12)	N1-N2	1.356(3)	N1-N2	1.354(4)	O4-C16	1.450(4)
N1-N2	1.351(4)	N1-N2	1.362(10)	N1-C1	1.443(4)	N1-C1	1.445(4)	N1-N2	1.366(4)
N1-C1	1.437(4)	N1-C1	1.420(12)	N1-C9	1.344(3)	N1-C10	1.358(4)	N1-C1	1.434(5)
N1-C7	1.357(4)	N1-C8	1.377(11)	N2-C11	1.327(4)	N2-C12	1.332(4)	N1-C10	1.350(4)
N2-C9	1.327(4)	N2-C10	1.333(11)	C1-C2	1.385(5)	C1-C2	1.370(6)	N2-C12	1.324(5)
C1-C2	1.374(5)	C1-C2	1.381(14)	C1-C6	1.370(4)	C1-C6	1.387(5)	C1-C2	1.387(5)
C1-C6	1.373(5)	C1-C6	1.412(14)	C2-C3	1.389(4)	C2-C3	1.379(6)	C1-C6	1.388(5)
C2-C3	1.373(5)	C2-C3	1.380(15)	C3-C4	1.374(5)	C3-C4	1.377(6)	C2-C3	1.382(5)
C3-C4	1.362(6)	C2-C7	1.481(15)	C3-C7	1.504(5)	C4-C5	1.369(6)	C3-C4	1.372(5)
C4-C5	1.357(6)	C3-C4	1.399(16)	C4-C5	1.375(6)	C5-C6	1.391(6)	C4-C5	1.371(5)
C5-C6	1.377(6)	C4-C5	1.366(15)	C5-C6	1.393(5)	C6-C7	1.502(6)	C5-C6	1.393(5)
C7-C8	1.382(5)	C5-C6	1.399(14)	C6-C8	1.495(5)	C7-C8	1.515(6)	C6-C7	1.517(5)
C8-C9	1.408(5)	C8-C9	1.395(13)	C9-C10	1.366(4)	C7-C9	1.522(6)	C7-C8	1.517(5)
C8-C12	1.481(5)	C9-C10	1.418(12)	C10-C11	1.403(4)	C10-C11	1.371(5)	C7-C9	1.529(5)
C9-C10	1.488(5)	C9-C13	1.469(13)	C10-C14	1.481(4)	C11-C12	1.400(4)	C10-C11	1.375(5)
		C10-C11	1.491(14)	C11-C12	1.481(4)	C11-C15	1.475(5)	C11-C12	1.406(5)
						C12-C13	1.481(5)	C11-C15	1.481(5)
								C12-C13	1.494(6)

Compou	nd 1	Compo	nd 2	Compou	nd 3	Compou	nd 4	Compou	nd 5
		C11-O2-		C12-O2-		C13-O2-		C13-O2-	
C10-O2-C11	115.5(3)	C12	116.1(8)	C13	115.8(3)	C14	115.5(3)	C14	115.2(4)
		C13-O4-		C14-O4-		C15-O4-		C15-O4-	
C12-O4-C13	116.1(3)	C14	117.3(9)	C15	116.4(3)	C16	116.0(3)	C16	114.5(3)
N2-N1-C1	119.6(3)	N2-N1-C1	121.1(7)	N2-N1-C1	119.8(2)	N2-N1-C1	121.2(3)	N2-N1-C1	120.3(3)
N2-N1-C7	112.1(3)	N2-N1-C8	111.1(8)	C9-N1-N2	111.3(2)	N2-N1-C10	111.4(3)	C10-N1-N2	111.0(3)
C7-N1-C1	128.3(3)	C8-N1-C1	127.8(8)	C9-N1-C1	128.9(2)	C10-N1-C1	127.4(3)	C10-N1-C1	128.5(4)
		C10-N2-							
C9-N2-N1	104.7(3)	N1	104.7(7)	C11-N2-N1	104.4(2)	C12-N2-N1	104.6(3)	C12-N2-N1	104.7(3)
C2-C1-N1	120.2(3)	C2-C1-N1	121.5(9)	C2-C1-N1	117.4(3)	C2-C1-N1	117.5(3)	C2-C1-N1	118.6(4)
C6-C1-N1	118.8(4)	C2-C1-C6	122.5(10)	C6-C1-N1	119.1(3)	C2-C1-C6	123.0(4)	C2-C1-C6	122.4(4)
C6-C1-C2	121.0(4)	C6-C1-N1	115.8(9)	C6-C1-C2	123.5(3)	C6-C1-N1	119.5(4)	C6-C1-N1	119.0(4)
C3-C2-C1	119.9(4)	C1-C2-C7	121.4(10)	C1-C2-C3	120.0(3)	C1-C2-C3	119.6(4)	C3-C2-C1	119.6(4)
C4-C3-C2	117.9(4)	C3-C2-C1	117.0(10)	C2-C3-C7	120.5(4)	C4-C3-C2	119.1(5)	C4-C3-C2	118.3(4)
F1-C4-C3	117.8(5)	C3-C2-C7	121.6(10)	C4-C3-C2	117.2(3)	C5-C4-C3	120.3(4)	C3-C4-Br1	118.8(4)
C5-C4-F1	118.8(4)	C2-C3-C4	122.5(11)	C4-C3-C7	122.3(4)	C4-C5-C6	122.3(4)	C5-C4-Br1	118.7(3)
C5-C4-C3	123.4(4)	C5-C4-C3	119.2(10)	C3-C4-C5	122.0(3)	C1-C6-C5	115.7(4)	C5-C4-C3	122.4(4)

C4-C5-C6	118.5(4)	C4-C5-Cl1	119.6(9)	C4-C5-C6	121.7(4)	C1-C6-C7	123.0(4)	C4-C5-C6	120.4(4)
C1-C6-C5	119.2(4)	C4-C5-C6	121.0(11)	C1-C6-C5	115.6(3)	C5-C6-C7	121.4(4)	C1-C6-C5	116.9(4)
N1-C7-Br1	121.2(3)	C6-C5-Cl1	119.4(9)	C1-C6-C8	122.9(3)	C6-C7-C8	110.4(4)	C1-C6-C7	122.6(4)
N1-C7-C8	107.1(3)	C5-C6-C1	117.7(9)	C5-C6-C8	121.5(3)	C6-C7-C9	111.7(4)	C5-C6-C7	120.4(4)
C8-C7-Br1	131.8(3)	N1-C8-Br1	120.9(7)	N1-C9-Br1	121.2(2)	C8-C7-C9	111.6(5)	C6-C7-C8	111.2(3)
C7-C8-C9	103.9(3)	N1-C8-C9	108.1(8)	N1-C9-C10	108.4(2)	N1-C10-Br1 N1-C10-	121.8(3)	C6-C7-C9	111.3(4)
C7-C8-C12	123.3(3)	C9-C8-Br1	131.0(7)	C10-C9-Br1	130.4(2)	C11 C11-C10-	107.6(3)	C8-C7-C9	111.3(4)
C9-C8-C12	132.3(3)	C8-C9-C10	102.6(7)	C9-C10-C11	103.6(2)	Br1 C10-C11-	130.5(3)	N1-C10-Br2 N1-C10-	121.1(3)
N2-C9-C8	112.2(3)	C8-C9-C13 C10-C9-	126.3(9)	C9-C10-C14 C11-C10-	127.0(3)	C12 C10-C11-	104.2(3)	C11 C11-C10-	108.2(4)
N2-C9-C10	117.6(3)	C13	131.0(9)	C14 N2-C11-	129.4(3)	C15 C12-C11-	128.1(3)	Br2 C10-C11-	130.6(3)
C8-C9-C10	129.9(3)	N2-C10-C9 N2-C10-	113.5(8)	C10 N2-C11-	112.3(2)	C15 N2-C12-	127.5(3)	C12 C10-C11-	103.5(3)
O1-C10-O2	124.3(4)	C11 C9-C10-	118.5(8)	C12 C10-C11-	119.9(3)	C11 N2-C12-	112.2(3)	C15 C12-C11-	126.4(4)
O1-C10-C9	124.4(4)	C11	127.5(8)	C12	127.3(3)	C13 C11-C12-	120.2(3)	C15 N2-C12-	129.9(4)
O2-C10-C9	111.1(3)	O1-C11-O2 O1-C11-	123.9(10)	O1-C12-O2 O1-C12-	124.7(3)	C13	127.5(3)	C11 N2-C12-	112.5(4)
O3-C12-O4	124.0(4)	C10 O2-C11-	123.7(10)	C11 O2-C12-	123.1(3)	O1-C13-O2 O1-C13-	124.4(4)	C13 C11-C12-	119.3(4)
O3-C12-C8	123.3(4)	C10	112.1(9)	C11	112.2(3)	C12 O2-C13-	123.3(4)	C13	128.2(4)
O4-C12-C8	112.5(3)	O3-C13-O4	125.2(10)	O3-C14-O4 O3-C14-	125.6(3)	C12	112.2(4)	O1-C13-O2 O1-C13-	125.0(5)
		O3-C13-C9	124.7(11)	C10 O4-C14-	124.2(3)	O3-C15-O4 O3-C15-	124.3(3)	C12 O2-C13-	123.4(4)
		O4-C13-C9	110.0(9)	C10	110.1(3)	C11 O4-C15-	124.4(3)	C12	111.6(4)
						C11	111.3(3)	O3-C15-O4 O3-C15-	125.6(4)
								C11 O4-C15-	124.2(4)
								C11	110.3(4)

Figure.1S. Stereoscopic view of a short length of a continuous array of halogen bond interactions (top) and a longer representative chain of molecules (bottom) to illustrate the trifurcated halogen bonding. These interactions form a continuum running parallel to the crystal b-axis.

Figure 2S. View of crystal structure in crystal **2** viewed along the *b*-axis showing the parallel packing of 2D layers, space filling representation.

Figure 3S. View of the crystal packing showing the parallel arrangement of 2D layers in crystal 3, space filling representation.

Figure 4S. View of the crystal packing showing the parallel arrangement of 2D layers in crystal 3, space filling representation.

1. Hirshfield analysis

2.8 d e	
2.6	
2.2	
2.0	
1.8	
1.4	
12	
	2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.0 1.2 1.4 1.5 1.8 2.2 2.4 1.4 1.5 1.8 2.4 2.4 2.5 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.6 2.4 2.6 2.6 2.6 2.4 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6