Electronic supplementary information

A mixed-valence copper chloride coordination polymer composed of one-dimensional cationic and anionic substructures

Hee Sun Park^a, Jae-Chang Lee^b, Myung-Hwa Jung^b, Yong-Min Lee^c, Wonwoo Nam^c, and Nam Hwi Hur^{*a}

^aDepartment of Chemistry, Sogang University, Seoul 04107, South Korea

^bDepartment of Physics, Sogang University, Seoul 04107, South Korea

^cDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, South Korea

Figure S1 Powder X-ray diffraction patterns for (a) compound (1) and (b) compound (2) (red line). For comparison, calculated X-ray diffraction patterns (black line) were included.

Compound	(1)	(2)
Chemical formula	$C_4H_{12}Cl_6Cu_3N_{10}$	$C_2H_7Cl_2N_5$
CCDC number	2209556	2209557
M (g mol ⁻¹)	603.56	172.03
<i>T</i> (K)	296(2)	295(2)
Crystal system	Triclinic	Orthorhombic
Space group	$P\overline{1}$	Pbca
<i>a</i> (Å)	3.71660(10)	14.0559(3)
<i>b</i> (Å)	7.2862(3)	7.0932(2)
<i>c</i> (Å)	15.1680(5)	14.1687(3)
α (deg)	84.5650(10)	90
β (deg)	84.9840(10)	90
γ (deg)	85.1940(10)	90
V (Å ³)	406.15(2)	1412.64(6)
Ζ	1	8
ρ (g cm ⁻³)	2.468	1.618
μ (mm ⁻¹)	4.889	0.839
Reflections/unique	16905/2036	48171/1769
R(int)	0.0304	0.0433
GOF on F ₂	1.101	1.15
$R_1, wR_2 [I > 2\sigma(I)]$	0.0435, 0.0954	0.0366, 0.0809
R_1 , w R_2 (all data)	0.0475, 0.0973	0.0453, 0.0846

Table S1 Detailed crystallographic information for (1) and (2).

D–H…A	H…A	D…A	D–H…A
N2-H2···Cl1 ^a	2.67	3.191(3)	119.9
N4–H4A…Cl1°	2.59	3.260(4)	136.0
N4–H4B…Cl1 ^d	2.85	3.254(3)	111.0
N4–H4B…Cl2	2.52	3.275(4)	147.3
N5–H5A…Cl2 ^b	2.49	3.258(4)	149.5
N5–H5B…Cl3	2.50	3.285(4)	152.6

Table S2 Hydrogen bond geometry for (1).

Symmetry codes: (a) -x, -y, 1-z; (b) -1+x, -1+y, z; (c) 1+x, y, z; (d) 1-x, 1-y, 1-z.

Figure S2 (a) X-band frozen EPR spectrum of (1) (black line) in Ar-saturated DMF at 80 K. Red line shows the simulated spectrum with the simulation parameters of g = [2.05, 2.05, 2.30] and A = [1.8, 1.8, 12.5] mT. (b) X-band frozen EPR spectrum of (1) in O₂-saturated DMF measured at 80 K. The EPR spectrum exhibits two different Cu^{II} species. One (blue) corresponds to $[Cu^{II}Cl_2(Hdatrz)_2]^{2+}$ and the other (red) is due to one-electron oxidized species of anionic $[Cu^{I_2}Cl_4]^{2-}$ subunit by O₂-activation.

Figure S3 Kubelka-Munk function for (a) compound (1) and (b) compound (2). The determinations of E_g are shown as dotted red lines. The inset shows the corresponding measured spectrum.

Figure S4 Total and projected density of states for (a) compound (1) and (b) compound (2).