Supporting Information

New charge-transfer complexes of 1,2,5-chalcogenadiazoles with tetrathiafulvalenes

Elena A. Chulanova,^{*,*a,b*} Ekaterina A. Radiush,^{*a*} Yaser Balmohammadi,^{*c*} Jens Beckmann,^{*d*} Simon Grabowsky^{*c*} and Andrey V. Zibarev^{*a*}

- ^a Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- ^b Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany E-mail: elena.chulanova@uni-tuebingen.de (E. A. Chulanova)
- ^c Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
- ^d Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany

Contents

- 1. Single-crystal X-ray diffraction
- 2. Powder X-ray diffraction
- **3. DFT calculations**
- 4. Hirshfeld surface analysis
- 5. References

1. Single-crystal X-ray diffraction

Complex	1	2	3	4	5'
Empirical formula	$C_{10}H_4N_4S_5$	$C_{21}H_6N_{12}S_6Se_3$	$C_{12}H_4N_2F_4S_5$	$C_{11}H_6N_4S_3$	$C_{18}H_8N_8S_8Te_2$
Formula weight (g mol ⁻¹)	340.47	855.62	412.47	290.38	848.00
Temperature [K]	100.0	100.0	100.0	100.0	100.0
Wavelength [Å]	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	pĪ	pĪ	Cc	$P2_1/c$	pĪ
<i>a</i> [Å]	6.6346(4)	7.3298(2)	9.8502(5)	11.0656(4)	7.5481(2)
<i>b</i> [Å]	13.3837(8)	7.8942(3)	10.6342(5)	8.8374(3)	7.7702(2)
<i>c</i> [Å]	15.6515(9)	26.3901(9)	14.8943(7)	12.0606(4)	12.5117(3)
α [°]	88.0932(2)	95.9690(10)	90	90	74.6450(10)
β [°]	86.315(2)	92.9840(10)	103.318(2)	104.261(2)	85.362(2)
γ [°]	79.276(3)	90.1160(10)	90	90	69.6810(10)
V [Å ³]	1362.33(14)	1516.63(9)	1518.20(13)	1143.07(7)	663.54(3)
Z	4	2	4	4	1
$ ho_{calcd} \left[Mg \; m^{-3} ight]$	1.660	1.874	1.805	1.687	2.122
$\mu \ [mm^{-1}]$	0.839	4.088	0.802	0.632	2.855
F (000)	688	828	824	592	404
Θ range [°]	2.61-25.00	2.33-35.10	2.81-32.59	2.89–30.14	2.878-28.34
Crystal size [mm ³]	0.2×0.15×0.15	0.30×0.25×0.15	0.25×0.25×0.10	$0.30 \times 0.20 \times 0.10$	0.40×0.20×0.15
Index range	$\begin{array}{l} -7 \leq h \leq 7, - \\ 15 \leq k \leq 15, - \\ 18 \leq l \leq 18 \end{array}$	$\begin{array}{l} -11 \leq h \leq 11, -12 \\ \leq k \leq 12, -42 \leq 1 \\ \leq 42 \end{array}$	$\begin{array}{l} -14 \leq h \leq 14, -16 \\ \leq k \leq 15, -22 \leq 1 \\ \leq 22 \end{array}$	$\begin{array}{l} -15 \leq h \leq 15, -12 \\ \leq k \leq 12, -16 \leq 1 \\ \leq 17 \end{array}$	$\begin{array}{l} -10 \leq h \leq 10, -10 \\ \leq k \leq 10, -16 \leq l \\ \leq 16 \end{array}$
Reflections collected	33113	122898	34507	62097	22597
Independent reflections	4769 [R _{int} = 0.1174]	13406 [R _{int} = 0.0580]	5421 [R _{int} = 0.0487]	3357 [R _{int} = 0.0948]	$3357 [R_{int} = 0.0354]$
Completeness to θ [%]	99.7	99.9	100.0	100.0	100.0
Data / restraints / parameters	4769 / 0 / 343	13406 / 0 / 379	5421 / 2 / 208	3357 / 0 / 163	3302 / 0 / 163

Table S1 Crystallographic data for the complexes

CCDC	2192018	2192019	2192020	2192021	2192022
Largest diff. peak / hole, e Å $^{-3}$	0.718 / -0.510	0.635 / -0.683	0.356 / -0.375	0.114 / -0.441	0.819 / -0.783
R indices (all data)	$R_1 = 0.0827,$ $wR_2 = 0.1524$	$R_1 = 0.0644, wR_2$ = 0.0595	$R_1 = 0.0543, wR_2$ = 0.0696	$R_1 = 0.0689, wR_2$ = 0.1254	$R_1 = 0.0248, wR_2$ = 0.0417
R indices $[I > 2\sigma(I)]$	$R_1 = 0.0579,$ $wR_2 = 0.1440$	$R_1 = 0.0371, wR_2$ = 0.0545	$R_1 = 0.0352, wR_2$ = 0.0637	$R_1 = 0.0495, wR_2$ = 0.1171	$R_1 = 0.0195, wR_2$ = 0.0402
Goodness of fit on F^2	1.096	1.044	1.038	1.083	1.102

2. Powder X-ray diffraction

Powder XRD was applied to control structural authenticity of low-crystalline bulky samples, as well as thin films, of the studied complexes.

Figure S1. Powder XRD patterns of complex 2: experimental (red) and calculated from the single-crystal data (black).

Figure S2. Powder XRD patterns of complex 3: experimental (blue) and calculated from the single-crystal data (red).

Figure S3. Powder XRD patterns of complex 5: experimental (red) and calculated from the single-crystal data (black).

3. DFT calculations.

Below are the molecular geometries optimized at B97-D3/def2-tzvp level of theory with an effective core potential (ECP) for Te.

С	6.405040000000	7.832869000000	2.717517000000
С	6.781619000000	7.829503000000	4.024254000000
С	5.081151000000	8.245964000000	0.542417000000
Η	4.243968000000	8.446275000000	-0.117156000000
С	6.372783000000	8.257703000000	0.174198000000
Η	6.727798000000	8.462465000000	-0.829587000000
С	6.793466000000	8.281619000000	6.559250000000
Η	6.423148000000	8.485556000000	7.557801000000
С	8.083380000000	8.324237000000	6.193169000000
Η	8.909875000000	8.564187000000	6.853004000000
S	8.467378000000	7.906802000000	4.537792000000
S	5.625386000000	7.802257000000	5.352305000000
S	7.564725000000	7.868653000000	1.387477000000
S	4.715602000000	7.870055000000	2.205035000000
С	5.289749000000	11.251578000000	2.264497000000
С	5.416471000000	11.097946000000	3.690320000000
С	4.062346000000	11.317776000000	1.547694000000
С	4.331173000000	11.045988000000	4.608837000000
N	6.460749000000	11.296355000000	1.624602000000

Ν	6.68594000000	11.015285000000	4.100310000000
N	3.055267000000	11.348180000000	0.969896000000
N	3.425662000000	11.042294000000	5.336555000000
S	7.631026000000	11.133939000000	2.766309000000

S	-7.967863000000	1.173586000000	20.448970000000
S	-9.261456000000	1.785103000000	24.622420000000
S	-9.236581000000	3.593803000000	22.281670000000
S	-8.224311000000	-0.683617000000	22.730209000000
С	-8.468287000000	0.951649000000	22.118992000000
С	-8.943885000000	1.972510000000	22.897847000000
С	-7.383964000000	-0.454085000000	20.229368000000
С	-7.501297000000	-1.294436000000	21.267769000000
С	-9.738826000000	3.438218000000	24.873788000000
С	-9.717684000000	4.264337000000	23.812705000000
Se	-11.636237000000	2.855959000000	19.530654000000
Ν	-11.645455000000	1.082724000000	19.974325000000
Ν	-10.574710000000	2.563441000000	18.083326000000
Ν	-8.556613000000	0.273732000000	16.407386000000
Ν	-10.385264000000	-2.073082000000	19.361279000000
С	-10.266921000000	1.278217000000	18.071447000000
С	-10.863257000000	0.456703000000	19.111095000000
С	-10.621918000000	-0.941291000000	19.247562000000

С	-9.339718000000	0.746957000000	17.123354000000
Se	-12.378622000000	0.698977000000	22.626162000000
Ν	-12.624415000000	0.968438000000	24.408399000000
Ν	-12.622145000000	2.476016000000	22.260032000000
N	-13.058053000000	3.261733000000	26.975303000000
N	-13.134421000000	5.661667000000	23.460913000000
С	-12.838925000000	2.257709000000	24.598478000000
С	-12.844826000000	3.090396000000	23.407663000000
С	-13.022195000000	4.505661000000	23.429867000000
С	-12.980290000000	2.791721000000	25.915667000000
Η	-7.211453000000	-2.338994000000	21.254205000000
Η	-6.996119000000	-0.713653000000	19.250890000000
Η	-10.039453000000	3.725728000000	25.875449000000
Н	-10.006943000000	5.309127000000	23.833506000000

S	12.400857000000	-2.920511000000	3.151386000000
F	8.604020000000	-0.581352000000	2.723377000000
N	11.010032000000	-2.097220000000	3.349689000000
F	12.042336000000	-2.294231000000	-1.269947000000
С	11.514010000000	-2.188865000000	1.066143000000
F	8.092785000000	-0.078704000000	0.082981000000
F	9.752826000000	-0.912579000000	-1.849417000000
С	9.188007000000	-0.759286000000	0.447452000000

Ν	12.576282000000	-2.872670000000	1.533419000000
С	10.072708000000	-1.200028000000	-0.580220000000
С	10.610780000000	-1.742438000000	2.113118000000
С	11.224067000000	-1.896797000000	-0.288307000000
С	9.444455000000	-1.014847000000	1.776073000000
С	10.337662000000	2.492009000000	-0.228957000000
Н	9.372829000000	2.941606000000	-0.434656000000
С	11.197570000000	2.059965000000	-1.163314000000
Н	11.027226000000	2.108903000000	-2.233408000000
С	13.998216000000	-0.028819000000	4.298438000000
Н	14.060188000000	-0.270207000000	5.354005000000
С	14.861066000000	-0.456139000000	3.361228000000
Н	15.720266000000	-1.089356000000	3.553715000000
S	10.812487000000	2.338666000000	1.445585000000
S	12.713572000000	1.380961000000	-0.621517000000
S	12.692634000000	1.006933000000	3.788733000000
S	14.598403000000	0.062731000000	1.718516000000
С	13.079950000000	0.900181000000	2.066646000000
С	12.301181000000	1.448528000000	1.097800000000

S	4.323652000000	3.807981000000	7.947584000000
S	3.449409000000	2.317415000000	5.565310000000
С	4.009116000000	2.110343000000	8.134609000000

С	3.598947000000	1.433467000000	7.048280000000
С	3.979873000000	3.853201000000	6.224376000000
S	3.771108000000	5.029174000000	3.741237000000
S	4.645459000000	6.519689000000	6.123496000000
С	4.085444000000	6.726851000000	3.554273000000
С	4.495652000000	7.403712000000	4.640601000000
С	4.114861000000	4.983945000000	5.464449000000
S	0.915107000000	7.639795000000	4.135527000000
Ν	0.966452000000	5.278541000000	6.954257000000
Ν	0.045062000000	4.079340000000	4.472437000000
Ν	1.183978000000	7.279395000000	5.695631000000
Ν	0.399024000000	6.228871000000	3.519500000000
С	0.654225000000	3.176836000000	8.040643000000
С	-0.212255000000	1.999175000000	5.620637000000
С	0.405727000000	5.360303000000	4.563724000000
С	0.594519000000	3.986484000000	6.870876000000
С	0.138665000000	3.382319000000	5.620611000000
С	0.863746000000	5.966436000000	5.816853000000
С	-0.137222000000	1.258686000000	6.773931000000
С	0.296281000000	1.852760000000	7.993113000000
S	7.179968000000	1.198371000000	7.554836000000
Ν	7.128373000000	3.558596000000	4.735250000000
Ν	8.049522000000	4.758837000000	7.216656000000
N	6.911163000000	1.558152000000	5.994582000000

N	7.695805000000	2.609603000000	8.170370000000
С	7.440233000000	5.659963000000	3.648119000000
С	8.306651000000	6.838599000000	6.067675000000
С	7.689075000000	3.477776000000	7.125818000000
С	7.500093000000	4.850739000000	4.818173000000
С	7.955858000000	5.455424000000	6.068224000000
С	7.231209000000	2.871110000000	5.872890000000
С	8.231498000000	7.578664000000	4.914114000000
С	7.797994000000	6.984106000000	3.695170000000
Η	-0.414021000000	0.207049000000	6.762430000000
Η	0.343652000000	1.245413000000	8.894222000000
Η	-0.544476000000	1.568400000000	4.679847000000
Η	0.992807000000	3.649513000000	8.958350000000
Η	3.356571000000	0.377583000000	7.025644000000
Η	4.133770000000	1.686700000000	9.124536000000
Η	3.960642000000	7.150540000000	2.564384000000
Η	4.737895000000	8.459625000000	4.663269000000
Η	7.750494000000	7.591132000000	2.793852000000
Η	8.508217000000	8.630326000000	4.925217000000
Η	7.101678000000	5.186912000000	2.730595000000
Η	8.638880000000	7.269749000000	7.008292000000

5'

Ν	7.503781000000	8.282418000000	2.105042000000
Ν	8.136784000000	10.636697000000	0.918243000000
С	7.963916000000	9.248320000000	2.849890000000
С	8.317036000000	10.529153000000	2.209485000000
Ν	9.248845000000	12.525887000000	3.571626000000
С	8.838302000000	11.631763000000	2.951812000000
Ν	8.249218000000	9.014902000000	5.420538000000
С	8.119010000000	9.095090000000	4.268692000000
S	5.321634000000	12.743867000000	1.119353000000
S	4.455866000000	10.149664000000	2.208475000000
S	5.949849000000	13.986212000000	3.708897000000
S	4.948159000000	10.875768000000	5.045343000000
С	4.540431000000	11.207411000000	0.812686000000
С	5.364450000000	12.569890000000	2.870113000000
С	4.970501000000	11.366288000000	3.368728000000
С	5.972870000000	13.442971000000	5.461846000000
Η	5.018816000000	13.716792000000	5.919561000000
Η	6.770696000000	14.050492000000	5.906000000000
С	6.269933000000	11.965028000000	5.673046000000
Η	7.221724000000	11.672561000000	5.229405000000
Н	6.310988000000	11.747309000000	6.746009000000
S	3.371976000000	9.283398000000	-0.782924000000
S	4.205050000000	11.904418000000	-1.823645000000
S	1.661188000000	8.698135000000	-3.221762000000

S	2.555231000000	11.735311000000	-4.291877000000	
С	4.093040000000	10.846783000000	-0.429592000000	
С	2.643968000000	9.802419000000	-2.303995000000	
С	3.035266000000	11.010881000000	-2.789314000000	
С	2.544647000000	8.914912000000	-4.824149000000	
Н	3.595368000000	8.682599000000	-4.639843000000	
Н	2.125130000000	8.155365000000	-5.494139000000	
С	2.367418000000	10.289383000000	-5.444659000000	
Н	1.364537000000	10.405184000000	-5.865951000000	
Н	3.114020000000	10.436146000000	-6.234368000000	
Te	8.219790000000	12.412803000000	-1.056998000000	
N	7.710940000000	12.995549000000	-2.934848000000	
N	7.488638000000	10.606202000000	-1.656120000000	
С	7.116689000000	12.003233000000	-3.552326000000	
С	6.990749000000	10.711532000000	-2.874248000000	
N	5.853022000000	8.675734000000	-3.993313000000	
С	6.368017000000	9.588343000000	-3.488931000000	
N	6.132611000000	12.247493000000	-5.943337000000	
С	6.581914000000	12.162560000000	-4.875266000000	

4. Hirshfeld surface analysis

Table S2 Interaction energy and its components (kJ mol⁻¹) for complexes 1-4 and 5'. The reference molecule below the HS and the color-coded neighboring molecules are depicted in Figure 2, left column. Calculated at the B3LYP/6-31G(d,p) / B3LYP/dgdzvp levels of theory^{*a*-*c*}

Molecule	E _{ele}	E _{pol}	E _{dis}	E _{rep}	E _{tot}	
1						
	-1.7 / -1.7	-0.1 / -0.1	-1.7^{b}	0.0 / 0.1	-3.3 / -3.2	
	-6.6 / -7.3	-0.9 / -1.0	-7.2^{b}	8.2 / 9.6	-8.9 / -8.9	
	-1.1 / -2.1	-0.5 / -0.5	-10.9^{b}	13.0 / 14.5	-3.0 / -3.1	
	-4.0 / -6.0	-0.6 / -0.6	-7.0^{a}	3.2 / 5.5	-8.8 / -9.4	
	-7.0 / -10.6	-0.8 / -0.8	-12.2^{b}	9.1 / 14.5	-13.0 / -13.5	
	-3.9 / -5.3	-0.8 / -0.9	-7.1^{b}	9.6 / 11.4	-4.9 / -5.3	
	-9.2 / -9.8	-1.5 / -1.5	-4.2^{b}	9.1 / 10.1	-8.9 / -8.8	
	-4.9 / -8.2	-0.7 / -0.8	-9.7^{b}	6.2 / 11.3	-10.3 / -10.7	
	-29.1 / -40.8	-4.4 / -4.7	-43.6^{b}	57.7 / 72.6	-36.4 / -39.8	
	-6.1 / -8.1	-1.2 / -1.3	-10.5^{b}	13.3 / 16.0	-8.3 / -8.7	
	-7.0 / -7.6	-1.3 / -1.3	-4.5^{b}	6.0 / 6.9	-8.6 / -8.6	
	-16.2 / -25.8	-3.8 / -4.0	-35.7^{b}	42.7 / 55.0	-24.6 / -27.4	
	-1.8 / -2.1	-0.2 / -0.2	-2.8^{b}	0.1 / 0.4	-4.4 / -4.6	
	-7.7 / -9.5	-0.8 / -0.7	-9.7^{b}	13.1 / 15.9	-9.0 / -9.2	
	0.1 / 0.1	-0.1 / -0.1	-0.7^{b}	0.0 / 0.0	-0.6 / -0.5	
	-1.2 / -2.0	-1.0 / -1.0	-8.0^{b}	6.1 / 8.3	-5.2 / -4.7	
	1.0 / 1.0	0.0 / 0.0	-0.2^{b}	0.0 / 0.0	0.8 / 0.8	
2						
	-14.4 / -23.0	-2.2 / -2.4	-23.3^{b}	31.9 / 46.3	-17.5 / -17.7	
	-0.5 / -0.5	-0.2 / -0.2	-1.2^{b}	0.0 / 0.0	-1.6 / -1.7	
	2.5 / 1.4	-1.1 / -1.2	-10.2^{b}	7.9 / 10.7	-2.0 / -1.6	
	-8.5 / -9.9	-0.9 / -0.8	-9.8^{b}	12.8 / 15.1	-10.2 / -10.2	
	-9.7 / -11.5	-1.6 / -1.6	-9.3^{b}	14.3 / 17.0	-10.7 / -10.9	
	-21.2 / -31.6	-3.6 / -3.8	-38.0^{b}	41.3 / 58.1	-32.7 / -33.5	
	-7.4 / -11.0	-0.9 / -0.9	-13.0^{b}	22.5 / 27.7	-5.9 / -6.5	

	-0.3 / -0.2	0.0 / 0.0	-0.2^{b}	0.0 / 0.0	-0.4 / -0.4	
3						
	-16.9 / -33.0	-2.5 / -2.8	-49.0^{b}	51.7 / 69.5	-30.5 / -36.6	
	1.3 / 1.2	-0.2 / -0.2	-1.3^{b}	0.0 / 0.0	0.1 / 0.1	
	-5.7 / -7.2	-0.9 / -0.9	-9.5^{b}	8.1 / 10.5	-10.0 / -10.0	
	-10.1 / -12.5	-1.5 / -1.6	-9.9^{b}	13.7 / 16.7	-12.0 / -12.7	
	-10.9 / -13.7	-1.4 / -1.6	-11.4^{b}	16.3 / 19.8	-12.5 / -13.3	
	-10.7 / -12.9	-0.9 / -0.9	-10.3^{b}	20.0 / 23.3	-8.6 / -8.9	
	-3.6 / -4.1	-0.4 / -0.4	-6.4^{b}	4.6 / 5.4	-6.9 / -6.9	
	-0.4 / -0.5	-0.2 / -0.3	-5.0^{b}	0.6 / 1.4	-4.5 / -4.2	
	-1.9 / -2.9	-0.2 / -0.3	-7.1^{b}	4.6 / 5.9	-5.5 / -5.8	
	-14.6 / -25.2	-2.1 / -2.3	-41.7^{b}	38.8 / 51.2	-29.3 / -33.0	
	-2.2 / -4.2	-0.3 / -0.4	-8.3^{b}	5.4 / 8.4	-6.4 / -6.7	
	0.4 / 0.3	-0.1 / -0.1	-4.0^{b}	1.7 / 2.2	-2.2 / -2.0	
			4			
	0.0 / 0.0	-0.1 / -0.1	-0.9^{b}	0.0 / 0.0	-0.9 / -0.9	
	-0.2 / -0.1	-0.1 / -0.1	-1.0^{b}	0.0 / 0.0	-1.1 / -1.0	
	-5.7 / -6.9	-1.0 / -1.0	-10.7^{b}	11.7 / 14.0	-8.9 / -8.6	
	-5.9 / -7.5	-0.9 / -0.9	-8.9^{b}	7.2 / 9.2	-10.1 / -10.6	
	-4.1 / -4.5	-0.5 / -0.5	-3.0^{b}	0.6 / 0.8	-6.9 / -7.3	
	-7.9 / -10.0	-2.6 / -2.8	-10.2^{b}	11.7 / 14.3	-11.9 / -12.7	
	-12.5 / -27.8	-2.3 / -2.3	-50.4^{b}	53.1 / 73.9	-26.0 / -29.3	
	-6.8 / -7.5	-0.8 / -0.9	-12.2^{b}	18.7 / 20.4	-6.8 / -6.6	
	-1.1 / -1.1	-0.1 / -0.1	-1.2^{b}	0.0 / 0.0	-2.2 / -2.3	
5 '°						
	-1.1	-0.7	-4.7	-1.6	-2.5	
	-21.2	-3.2	-28.3	48.8	-19.2	
	-47.3	-4.4	-43.5	78.4	-42.7	
	-14.4	-2.6	-6.5	13.1	-14.7	
	-9.7	-2.4	-6.8	14.6	-9.0	
	-8.2	-1.4	-10.3	7.2	-14.2	
	-13.7	-1.5	-14.0	18.5	-16.4	
	-22.1	-3.1	-29.6	36.9	-28.7	

-12.1	-0.8	-21.7	44.3	-4.8
-1.5	-0.4	-1.9	0.1	-0.3
-0.0	-0.2	-1.0	0.0	-1.0
-1.1	-0.1	-0.6	0.0	-1.7
-2.6	-0.2	-0.4	-0.0	-2.2
-1.0	-0.0	-0.1	0.0	-0.9
-0.6	-0.0	-0.2	0.0	-0.4
-0.3	-0.0	-0.1	0.0	-0.4

^{*a*} E_{tot} is the total interaction energy; and E_{ele} , E_{pol} , E_{dis} and E_{rep} are energies of electrostatic, polarization, dispersion and Pauli-repulsion interactions, respectively. E_{ele} , E_{pol} , E_{dis} and E_{rep} are given as absolute values without scale factor, whereas E_{tot} is the sum of the scaled¹ components. ^{*b*} The dispersion energies are independent of the level of theory as they are taken as sums of tabulated atomic Grimme terms. ^c For **5**', only B3LYP/dgdzvp data are given because for the element Te, the basis set 6-31G(d,p) is not defined.

4. References

1 C. F. Mackenzie, P. R. Spackman, D. Jayatilaka and M. A. Spackman, *IUCrJ*, 2017, 4, 575–587.