Construction of CuInS₂/La₂Ti₂O₇ heterojunction for highly

efficient hydrogen evolution

Wenning Zhao, ^a Haodong Wen ^a and Xiuxun Han ^{*a}

^a Institute of Optoelectronic Materials and Devices, Faculty of Materials Metallurgy and

Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.

Fig. S1 XRD patterns of composites with different loading amount.

Fig. S2 SEM image of composite (10 wt% CuInS₂/La₂Ti₂O₇).

Fig. S3 Time-resolved photoluminescence (TRPL) spectra of CuInS₂ and CuInS₂/La₂Ti₂O₇ composite.

Fig. S4 Absorption spectra of composites with different loading amount.

Fig. S5 PL spectra of 5×10^{-4} M basic TA solutions with different photocatalysts (La₂Ti₂O₇ and 5 wt% CuInS₂/La₂Ti₂O₇), after irradiating with a Xenon lamp for 5 min (excitation at $\lambda = 315$ nm).