Template-assisted preparation of imbricate N-Mo_xC nanotubes for effective

electrocatalytic hydrogen evolution reaction

Songjie Li,^{a,b} Shilong Su,^{a,b} Yun Tian,^{a,b} Yuanyuan Li,^{a,b} Xiaomei Yu,^{*a,b} Panfei Sun,^{a,b} and Jin You

Zheng,*^{a,b}

^a School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

^b Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China

Corresponding authors:

Dr. Xiaomei Yu, Email: <u>yuxm@zzu.edu.cn</u>

Dr. Jin You Zheng, Email: jinyouzh@zzu.edu.cn

Fig. S1. SEM images of MoO₃ nanowires prepared with the different volume ratios of HNO_3/H_2O of (a,b) 1 : 5, (c,d) 1 : 6 and (e,f) 1 : 7.

Fig. S2. (a,b) SEM and (c,d) TEM images of Mo₂C NTs (pH-6.35).

Fig. S3. SEM images of N-Mo_xC prepared with the mass ratio of $Mo_2C/C_2H_4N_4$ of 1: 10, following the subsequent annealing under 700 °C for 2.0 h.

Fig. S4. (a-f) Cyclic voltammetry curves of N-Mo_xC prepared at 700 °C for 2.0 h with the respective mass ratio of Mo₂C/C₂H₄N₄ varying from 1: 2.5 to 1: 15, and (g) the corresponding double-layer capacitance (C_{dl}) values were obtained from the plotting of the charging current density ($\Delta j = j_a - j_c$) against the scan rate.

Fig. S5. (a-e) Cyclic voltammetry curves of N-Mo_xC prepared with the mass ratio of Mo₂C/C₂H₄N₄ of 1: 10, following the subsequent annealing at temperatures varying from 600-800 °C for 2.0 h, respectively. (f) The corresponding double-layer capacitance (C_{dl}) values were obtained from the plotting of the charging current density ($\Delta j = j_a - j_c$) against the scan rate.

Fig. S6. (a-e) Cyclic voltammetry curves of N-Mo_xC prepared with the mass ratio of Mo₂C/C₂H₄N₄ of 1: 10, following the subsequent annealing at 700 °C for a prolonged time of 1.0 to 3.0 h, respectively. (f) The corresponding double-layer capacitance (C_{dl}) values were obtained from the plotting of the charging current density ($\Delta j = j_a - j_c$) against the scan rate.

Fig. S7. (a) Polarization curves, (b) Tafel plots, and (c) Nyquist plots of MoO_3 , the optimized Mo_2C , N-Mo_xC and Pt/C. (d) Chronopotentiometry measurement of N-Mo_xC at a current density of 10 mA cm⁻².

Table S1. Comparison	of η_{10} and Tafel	slopes of N-Mo	_x C with other	Mo_2C based	electrocatalysts
reported previously for	water splitting.	1			•

Catalyst	Electrolyte	$\eta_{10}({ m mV})$	Tafel slope (mV dec ⁻¹)	Ref.s
Bulk Mo ₂ C	1.0 M KOH	228	107	44
3D Mo ₂ C@GF	1.0 M KOH	129	62	45
NP-Mo ₂ C	0.5 M H ₂ SO ₄	210	64	46
Mo ₂ C@NC	0.5 M H ₂ SO ₄	157	60.6	47
Pt ₁ -Mo ₂ C-C	1.0 M KOH	155	64	48
MoC QDs@NC	1.0 M KOH	160	55	49
N-Mo _x C	1.0 M KOH	120	89	This work