Supporting Information

Noncovalent $n \rightarrow \pi^*$, C–H··· π , and C–H···O Interactions Mediated Supramolecular Assembly in a Re(CO)₃(trifluoroacetate) Complex Bearing a Bulky Tetraazaphenanthrene Ligand: A Combined CSD Study and Theoretical Calculations

Reza Kia,*^a Hadis Shojaei,^a Vadim P. Boyarskiy^b and Alexander S. Mikherdov^b

^aChemistry Department, Sharif University of Technology, Tehran, 11155-3516, Iran; ^bSaint Petersburg State University, Universiteskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation

Corresponding author: rkia@sharif.edu & zsrkk@yahoo.com

Tel.: +98-21-66165332, Fax: +98-21-66029165

Title	Page
Table S1. Bond lengths and angles of the title complex.	3-11
Table S2. The Cartesian coordinates of the optimized structure.	12-14
Table S3. Found structures based on the model scheme in CSD.	15
Figure S1. FT-IR spectra of [Re(CO) ₃ (CH ₃ CN) ₂ (OCOCF ₃)] complex in solid (black) and	16
solution (red) phases.	
Figure S2. FT-IR spectra of [Re(CO) ₃ (Ph ₄ TAP)(OCOCF ₃)] complex in solid (black) and	16
solution (red) phases.	
Figure S3 . ¹ H NMR spectrum of Ph_4TAP in CDCl ₃ .	17
Figure S4. ¹ H NMR spectrum of the complex.	17
Figure S5. ¹⁹ F NMR spectrum of the complex.	18
Figure S6 . The intramolecular $n \rightarrow \pi^*$ interactions (donor-acceptor orbitals) involved in	19
$n_s(O5) \rightarrow \pi^*_{\perp,l}$ (C2=O2), and $n_p(O5) \cdots \sigma^*$ (C2=O2).	
Figure S7. The crystallographic dimer associates of the complex for energy decomposition	20
analysis (EDA).	
Figure. S8. Searched model scheme by CSD version 5.42 updates (Feb 2021) for group	21
M ^{7B} (tricarbonyl)(trifluoroacetate) complexes.	

Re(1)-C(1)	1.918(5)
Re(1)-C(3)	1.929(6)
Re(1)-C(2)	1.930(6)
Re(1)-O(4)	2.163(3)
Re(1)-N(1)	2.215(4)
Re(1)-N(2)	2.217(4)
O(4)-C(14)	1.259(7)
O(2)-C(2)	1.145(7)
O(3)-C(3)	1.140(7)
N(2)-C(12)	1.330(6)
N(2)-C(8)	1.361(6)
N(4)-C(13)	1.321(6)
N(4)-C(9)	1.361(6)
N(1)-C(4)	1.334(6)
N(1)-C(7)	1.368(6)
N(3)-C(5)	1.325(6)
N(3)-C(6)	1.351(6)
O(1)-C(1)	1.128(6)
C(10)-C(11)	1.361(7)
C(10)-C(9)	1.419(6)
C(10)-H(10)	0.9300
C(21)-C(20)	1.388(7)
C(21)-C(16)	1.402(7)
C(21)-H(21)	0.9300
C(29)-C(30)	1.391(7)
C(29)-C(28)	1.392(7)
C(29)-H(29)	0.9300
C(9)-C(8)	1.394(6)
O(5)-C(14)	1.214(7)
C(7)-C(6)	1.392(7)
C(7)-C(8)	1.435(6)
C(12)-C(13)	1.439(6)
C(12)-C(28)	1.485(6)
C(4)-C(5)	1.446(6)
C(4)-C(16)	1.488(6)
C(20)-C(19)	1.386(7)
C(20)-H(20)	0.9300

Table S1. Bond lengths [Å] and angles [°] for the Complex.

C(5)-C(22)	1.480(6)
C(28)-C(33)	1.389(7)
C(39)-C(38)	1.378(7)
C(39)-C(34)	1.396(7)
C(39)-H(39)	0.9300
C(34)-C(35)	1.391(7)
C(34)-C(13)	1.490(6)
C(11)-C(6)	1.434(6)
С(11)-Н(11)	0.9300
C(16)-C(17)	1.384(6)
C(23)-C(22)	1.393(7)
C(23)-C(24)	1.395(7)
C(23)-H(23)	0.9300
C(27)-C(26)	1.391(7)
C(27)-C(22)	1.396(7)
С(27)-Н(27)	0.9300
C(24)-C(25)	1.378(9)
C(24)-H(24)	0.9300
C(38)-C(37)	1.401(8)
C(38)-H(38)	0.9300
C(33)-C(32)	1.379(7)
С(33)-Н(33)	0.9300
C(35)-C(36)	1.380(7)
C(35)-H(35)	0.9300
C(17)-C(18)	1.384(7)
С(17)-Н(17)	0.9300
C(30)-C(31)	1.381(8)
C(30)-H(30)	0.9300
C(19)-C(18)	1.387(8)
C(19)-H(19)	0.9300
C(37)-C(36)	1.386(8)
С(37)-Н(37)	0.9300
C(18)-H(18)	0.9300
C(25)-C(26)	1.389(9)
C(25)-H(25)	0.9300
C(36)-H(36)	0.9300
C(26)-H(26)	0.9300
C(32)-C(31)	1.389(8)

C(32)-H(32)	0.9300
C(31)-H(31)	0.9300
C(14)-C(15)	1.539(9)
C(15)-F(2A)	1.142(19)
C(15)-F(1A)	1.224(18)
C(15)-F(3)	1.31(2)
C(15)-F(1)	1.316(15)
C(15)-F(2)	1.383(16)
C(15)-F(3A)	1.26(5)
C(1)-Re(1)-C(3)	87.4(2)
C(1)-Re(1)-C(2)	88.0(2)
C(3)-Re(1)-C(2)	83.9(2)
C(1)-Re(1)-O(4)	174.71(18)
C(3)-Re(1)-O(4)	95.70(18)
C(2)-Re(1)-O(4)	96.55(17)
C(1)-Re(1)-N(1)	98.47(19)
C(3)-Re(1)-N(1)	172.70(17)
C(2)-Re(1)-N(1)	100.59(17)
O(4)-Re(1)-N(1)	78.14(13)
C(1)-Re(1)-N(2)	97.79(18)
C(3)-Re(1)-N(2)	99.08(17)
C(2)-Re(1)-N(2)	173.55(16)
O(4)-Re(1)-N(2)	77.50(13)
N(1)-Re(1)-N(2)	75.91(14)
C(14)-O(4)-Re(1)	123.8(3)
C(12)-N(2)-C(8)	117.2(4)
C(12)-N(2)-Re(1)	130.4(3)
C(8)-N(2)-Re(1)	111.5(3)
C(13)-N(4)-C(9)	117.1(4)
C(4)-N(1)-C(7)	117.2(4)
C(4)-N(1)-Re(1)	130.1(3)
C(7)-N(1)-Re(1)	111.2(3)
C(5)-N(3)-C(6)	118.0(4)
C(11)-C(10)-C(9)	121.0(4)
C(11)-C(10)-H(10)	119.5
C(9)-C(10)-H(10)	119.5
C(20)-C(21)-C(16)	118.7(5)

C(20)-C(21)-H(21)	120.7
С(16)-С(21)-Н(21)	120.7
C(30)-C(29)-C(28)	119.5(5)
C(30)-C(29)-H(29)	120.3
С(28)-С(29)-Н(29)	120.3
N(4)-C(9)-C(8)	120.5(4)
N(4)-C(9)-C(10)	119.7(4)
C(8)-C(9)-C(10)	119.8(4)
N(1)-C(7)-C(6)	121.8(4)
N(1)-C(7)-C(8)	118.4(4)
C(6)-C(7)-C(8)	119.8(4)
N(2)-C(12)-C(13)	119.9(4)
N(2)-C(12)-C(28)	120.1(4)
C(13)-C(12)-C(28)	120.0(4)
N(1)-C(4)-C(5)	120.4(4)
N(1)-C(4)-C(16)	118.3(4)
C(5)-C(4)-C(16)	121.3(4)
C(19)-C(20)-C(21)	120.7(5)
С(19)-С(20)-Н(20)	119.6
С(21)-С(20)-Н(20)	119.6
N(2)-C(8)-C(9)	122.3(4)
N(2)-C(8)-C(7)	118.1(4)
C(9)-C(8)-C(7)	119.6(4)
N(3)-C(5)-C(4)	121.3(4)
N(3)-C(5)-C(22)	115.8(4)
C(4)-C(5)-C(22)	122.9(4)
C(33)-C(28)-C(29)	119.9(4)
C(33)-C(28)-C(12)	119.2(4)
C(29)-C(28)-C(12)	120.5(4)
C(38)-C(39)-C(34)	119.8(5)
С(38)-С(39)-Н(39)	120.1
С(34)-С(39)-Н(39)	120.1
C(35)-C(34)-C(39)	119.8(5)
C(35)-C(34)-C(13)	120.4(4)
C(39)-C(34)-C(13)	119.8(4)
C(10)-C(11)-C(6)	120.3(4)
С(10)-С(11)-Н(11)	119.9
C(6)-C(11)-H(11)	119.9

C(17)-C(16)-C(21)	120.5(4)
C(17)-C(16)-C(4)	119.9(4)
C(21)-C(16)-C(4)	119.6(4)
C(22)-C(23)-C(24)	120.3(5)
C(22)-C(23)-H(23)	119.9
C(24)-C(23)-H(23)	119.9
N(3)-C(6)-C(7)	121.0(4)
N(3)-C(6)-C(11)	119.4(4)
C(7)-C(6)-C(11)	119.6(4)
O(2)-C(2)-Re(1)	174.6(4)
C(26)-C(27)-C(22)	121.1(5)
C(26)-C(27)-H(27)	119.5
С(22)-С(27)-Н(27)	119.5
N(4)-C(13)-C(12)	122.5(4)
N(4)-C(13)-C(34)	116.7(4)
C(12)-C(13)-C(34)	120.8(4)
C(25)-C(24)-C(23)	119.8(5)
C(25)-C(24)-H(24)	120.1
C(23)-C(24)-H(24)	120.1
C(23)-C(22)-C(27)	118.9(4)
C(23)-C(22)-C(5)	123.6(4)
C(27)-C(22)-C(5)	117.4(4)
C(39)-C(38)-C(37)	120.3(5)
C(39)-C(38)-H(38)	119.8
C(37)-C(38)-H(38)	119.8
O(3)-C(3)-Re(1)	176.1(4)
C(32)-C(33)-C(28)	120.2(5)
С(32)-С(33)-Н(33)	119.9
С(28)-С(33)-Н(33)	119.9
O(1)-C(1)-Re(1)	178.5(5)
C(36)-C(35)-C(34)	120.2(5)
C(36)-C(35)-H(35)	119.9
С(34)-С(35)-Н(35)	119.9
C(16)-C(17)-C(18)	120.3(5)
С(16)-С(17)-Н(17)	119.8
С(18)-С(17)-Н(17)	119.8
C(31)-C(30)-C(29)	120.3(5)
С(31)-С(30)-Н(30)	119.8

C(29)-C(30)-H(30)	119.8
C(20)-C(19)-C(18)	120.2(5)
C(20)-C(19)-H(19)	119.9
C(18)-C(19)-H(19)	119.9
C(36)-C(37)-C(38)	119.4(5)
С(36)-С(37)-Н(37)	120.3
С(38)-С(37)-Н(37)	120.3
C(17)-C(18)-C(19)	119.7(5)
C(17)-C(18)-H(18)	120.2
C(19)-C(18)-H(18)	120.2
C(24)-C(25)-C(26)	121.0(5)
C(24)-C(25)-H(25)	119.5
C(26)-C(25)-H(25)	119.5
C(35)-C(36)-C(37)	120.4(5)
C(35)-C(36)-H(36)	119.8
C(37)-C(36)-H(36)	119.8
C(25)-C(26)-C(27)	118.9(5)
C(25)-C(26)-H(26)	120.5
C(27)-C(26)-H(26)	120.5
C(33)-C(32)-C(31)	120.1(5)
С(33)-С(32)-Н(32)	120.0
C(31)-C(32)-H(32)	120.0
C(30)-C(31)-C(32)	120.0(5)
C(30)-C(31)-H(31)	120.0
C(32)-C(31)-H(31)	120.0
O(5)-C(14)-O(4)	129.6(5)
O(5)-C(14)-C(15)	117.5(5)
O(4)-C(14)-C(15)	112.8(5)
F(2A)-C(15)-F(1A)	107.2(17)
F(3)-C(15)-F(1)	103.7(15)
F(3)-C(15)-F(2)	102.1(15)
F(1)-C(15)-F(2)	115.3(14)
F(2A)-C(15)-F(3A)	99(2)
F(1A)-C(15)-F(3A)	111(2)
F(2A)-C(15)-C(14)	117.1(10)
F(1A)-C(15)-C(14)	117.0(11)
F(3)-C(15)-C(14)	118.9(9)
F(1)-C(15)-C(14)	110.1(9)

106.9(8)	
104.1(14)	
	2.8(6)
	-176.4(4)
	177.8(4)
	-1.4(7)
	4.7(6)
	-162.7(4)
	-176.3(4)
	16.4(5)
	4.4(6)
	-163.3(3)
	-175.3(4)
	17.0(6)
	-2.1(6)
	162.4(3)
	177.3(4)
	-18.2(6)
	0.0(7)
	-6.5(6)
	163.4(3)
	173.7(4)
	-16.4(5)
	2.9(7)
	-177.8(4)
	-177.2(4)
	2.0(6)
	0.0(6)
	179.1(4)
	-179.8(4)
	-0.8(6)
	4.9(7)
	-177.0(4)
	-2.7(7)
	177.9(4)
	179.3(4)
	-0.1(7)
	106.9(8) 104.1(14)

C(30)-C(29)-C(28)-C(33)	0.8(7)
C(30)-C(29)-C(28)-C(12)	-172.7(4)
N(2)-C(12)-C(28)-C(33)	61.1(6)
C(13)-C(12)-C(28)-C(33)	-118.6(5)
N(2)-C(12)-C(28)-C(29)	-125.4(5)
C(13)-C(12)-C(28)-C(29)	55.0(6)
C(38)-C(39)-C(34)-C(35)	-1.7(7)
C(38)-C(39)-C(34)-C(13)	179.7(5)
C(9)-C(10)-C(11)-C(6)	-0.5(7)
C(20)-C(21)-C(16)-C(17)	-0.2(7)
C(20)-C(21)-C(16)-C(4)	177.2(4)
N(1)-C(4)-C(16)-C(17)	-64.3(6)
C(5)-C(4)-C(16)-C(17)	115.1(5)
N(1)-C(4)-C(16)-C(21)	118.3(5)
C(5)-C(4)-C(16)-C(21)	-62.3(6)
C(5)-N(3)-C(6)-C(7)	-2.4(7)
C(5)-N(3)-C(6)-C(11)	177.2(4)
N(1)-C(7)-C(6)-N(3)	-2.5(7)
C(8)-C(7)-C(6)-N(3)	178.4(4)
N(1)-C(7)-C(6)-C(11)	177.9(4)
C(8)-C(7)-C(6)-C(11)	-1.1(7)
C(10)-C(11)-C(6)-N(3)	-177.8(4)
C(10)-C(11)-C(6)-C(7)	1.7(7)
C(9)-N(4)-C(13)-C(12)	-4.9(6)
C(9)-N(4)-C(13)-C(34)	175.7(4)
N(2)-C(12)-C(13)-N(4)	1.3(7)
C(28)-C(12)-C(13)-N(4)	-179.0(4)
N(2)-C(12)-C(13)-C(34)	-179.4(4)
C(28)-C(12)-C(13)-C(34)	0.3(6)
C(35)-C(34)-C(13)-N(4)	-125.6(5)
C(39)-C(34)-C(13)-N(4)	52.9(6)
C(35)-C(34)-C(13)-C(12)	55.0(6)
C(39)-C(34)-C(13)-C(12)	-126.5(5)
C(22)-C(23)-C(24)-C(25)	-0.3(8)
C(24)-C(23)-C(22)-C(27)	-0.6(7)
C(24)-C(23)-C(22)-C(5)	-177.9(5)
C(26)-C(27)-C(22)-C(23)	0.6(7)
C(26)-C(27)-C(22)-C(5)	178.0(5)

140.7(5)
-41.1(7)
-36.6(6)
141.5(5)
2.7(8)
-0.8(7)
172.8(4)
-0.2(7)
178.4(5)
0.6(7)
-176.8(5)
0.2(8)
-0.1(8)
-1.7(8)
-0.7(8)
0.5(8)
1.4(8)
1.1(8)
-0.2(8)
-1.4(8)
0.4(8)
-0.2(7)
-1.3(8)
1.3(8)
6.3(10)
-170.1(5)
-134(2)
43(2)
-5(2)
172(2)
155.5(16)
-27.7(18)
36.2(16)
-147.0(14)
-89.8(15)
87.1(15)
118.4(19)
-65(2)

Re	0.11263212	-1.31428131	0.32669291
0	0.10457229	0.26054029	1.84265544
0	-2.00087404	-3.05045733	1.74767281
0	2.17968459	-2.97809174	1.88579192
Ν	1.50280977	0.28974678	-0.52443916
Ν	2.84136354	2.73425281	-0.82403793
Ν	-1.25448792	0.23781987	-0.63471652
Ν	-2.66080450	2.63436031	-0.98585661
0	0.22336425	-3.31794123	-2.00569676
С	0.74978897	3.89956506	-0.90894250
Η	1.31258382	4.82762120	-0.96856468
С	-4.29671440	-1.22483018	0.33229760
Η	-4.52518419	-0.41243044	1.01842661
С	4.55503242	-1.05429866	0.60848687
Η	4.75611678	-0.21631813	1.27428832
С	1.49725999	2.68633171	-0.80363757
0	-2.14259341	0.26669186	2.17710909
С	-0.60303008	1.42683205	-0.75235270
С	2.84237465	0.33447543	-0.56629204
С	-2.58813194	0.23276013	-0.75028268
С	-4.95930776	-2.44143183	0.42708655
Н	-5.72591670	-2.57778699	1.18676742
С	0.81839108	1.45239112	-0.69981075
С	-3.29336585	1.46530877	-0.96587761
С	3.58204032	-0.92717958	-0.38929706
С	5.60909135	2.82476768	-0.31475429
Н	5.00012934	3.53943913	0.23445279
С	4.98149885	1.71187534	-0.89162968

Table S2. Cartesian coordinates of the optimized structure of the title complex.

С	-0.61080676 3.87455538 -0.95007573
Н	-1.20264612 4.78177295 -1.04173028
С	-3.28938234 -1.05410632 -0.62426197
С	-5.46324412 0.61191821 -1.94524005
Н	-4.94086275 -0.21989210 -2.41299049
С	-1.31907813 2.63471394 -0.89115763
С	-1.22943197 -2.37788649 1.19874627
С	-5.45022562 2.61600853 -0.59920069
Н	-4.89436710 3.34042330 -0.00826244
С	3.51350142 1.58855491 -0.76130674
С	-6.83025861 0.76107055 -2.14535511
Н	-7.36299680 0.04183277 -2.76418594
С	-4.75622695 1.53645991 -1.16320238
С	6.98003233 3.00841398 -0.44023957
Н	7.45454017 3.86855886 0.02801896
С	1.41100613 -2.34407433 1.28327481
С	3.32772054 -2.00586104 -1.24487307
Н	2.58282804 -1.90062927 -2.03134166
С	0.18527265 -2.55911950 -1.11419513
С	5.75741603 0.80404032 -1.62647953
Н	5.28784708 -0.05279166 -2.10505748
С	-2.96274022 -2.10894289 -1.48462550
Н	-2.18708638 -1.96723954 -2.23546337
С	5.24804927 -2.24906700 0.75669246
Н	5.98869432 -2.34711988 1.54735554
С	-4.63435175 -3.48853457 -0.43408848
Н	-5.15719026 -4.43975774 -0.35454052
F	-1.87541008 2.38198892 3.78484029
С	7.74335358 2.09611998 -1.16594776

Η	8.81730224	2.24068733	-1.26785732
С	-3.63528419	-3.32223303	-1.39063075
Н	-3.37316621	-4.13701344	-2.06271198
С	-7.51461846	1.82304287	-1.55830937
Н	-8.58768054	1.92928443	-1.70669494
С	7.12590814	1.00117163	-1.76641960
Н	7.71238925	0.29421303	-2.34972695
С	-6.81988631	2.75077086	-0.78476594
Н	-7.34757244	3.58390568	-0.32463835
С	4.03128381	-3.19592589	-1.10084228
Н	3.82375620	-4.02778018	-1.77096079
С	4.99020190	-3.31946084	-0.09774318
Н	5.53582994	-4.25337884	0.02132813
С	-1.00312118	0.69346192	2.32812968
F	0.21797265	1.86766699	4.02718491
С	-0.77741468	1.98626225	3.13334788
F	-0.43209196	2.98020877	2.27440412

CSD Code	Interactions	References
FIDBEA	Intramolecular R.Kia, V.Mirkhani, A.Deak, A.Kalman (2005), Acta	
	$n \rightarrow \pi^*$ interaction	Crystallogr.,Sect.E:Struct.Rep.Online ,61,m566.
HATNAS	Intramolecular	J.Bravo, J.A.Castro, E.Freijanes, S.Garcia-Fontan,
	$n \rightarrow \pi^*$ interaction	E.M.Lamas, P.Rodriguez-Seoane (2005)
		Z.Anorg.Allg.Chem . ,631, 2067.
HATPAU	Intramolecular	J.Bravo, J.A.Castro, E.Freijanes, S.Garcia-Fontan,
	$n \rightarrow \pi^*$ interaction	E.M.Lamas, P.Rodriguez-Seoane (2005)
		Z.Anorg.Allg.Chem . ,631, 2067.
IVAKIB	Intramolecular	D.Sieh, C.P.Kubiak (2016) ChemEur.J. ,22, 10638.
	$n \rightarrow \pi^*$ interaction	
ODIQIC	Intramolecular	R.Kia, V.Mirkhani, A.Kalman, A.Deak (2007) Polyhedron,
	$n \rightarrow \pi^*$ interaction	26,2906.
RODWIR	Intra- and	R.Kia, HK.Fun (2008)
	intermolecular	Acta Crystallogr.,Sect.E:Struct.Rep.Online ,64,m1314.
	$n \rightarrow \pi^*$ interactions	
RURZEK	Intramolecular	S.Bolano, J.Bravo, J.Castro, S.Garcia-Fontan,
	$n \rightarrow \pi^*$ interaction	M.C.Rodriguez (2009) Polyhedron ,28,2431.
YIBRIL	Intra- and	R.Kia, V.Mirkhani, A.Kalman, A.Deak (2007)
	intermolecular	Polyhedron, 26,1711.
	$n \rightarrow \pi^*$ interactions	

 Table S3. Found structures based on the model scheme in CSD

Fig. S1. FT-IR spectra of $[Re(CO)_3(CH_3CN)_2(OCOCF_3)]$ complex in solid (black) and solution (red) phases.

Fig. S2. FT-IR spectra of $[Re(CO)_3(Ph_4TAP)_2(OCOCF_3)]$ complex in solid (black) and solution (red) phases.

Figure S3. ¹H NMR (500 MHz) spectrum of Ph₄TAP in CDCl₃.

Figure S4. ¹H NMR spectrum of the complex.

Figure S5. ¹⁹F NMR spectrum of the complex.

(a)

(b)

Figure S6. The intramolecular $n \to \pi^*$ interactions (donor-acceptor orbitals) involved in $n_s(O5) \to \pi^*_{\perp,l}$ (C2=O2), and $n_p(O5) \cdots \sigma^*$ (C2=O2).

Figure S7. The crystallographic dimer associates of the complex for energy decomposition analysis (EDA).

Fig. S8. Searched model scheme by CSD version 5.42 updates (Feb 2021) for group M^{7B}(tricarbonyl)(trifluoroacetate) complexes.