Supplementary Information

Missing Puzzle in Crystal Engineering: 2-Pyridone and [1,3,5]-Triazine-2,4-diamine, Two Most Common Cyclic Hydrogen Bonding Sticky Sites, in a Single Core

Adela Abidi,*[†] Emmanuelle Fortin,[†] Kariane Larocque,[†] Mohamed Essalhi,[†] Nour Dissem,[†] Daniel Chartrand,[‡] Thierry Maris,[‡] Adam Duong[†]

†Département de Chimie, Biochimie et Physique, Institut de Recherche sur l'Hydrogène, Laboratory of Functional Materials For Energy and Nanotechnology (DuongLab) and Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada ‡ Département de Chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada

*To whom correspondence should be addressed. E-mail: adela.abidi@uqtr.ca

Contents		Page
I.	Fig. S1 IR spectrum of compounds 1-4	S3
II.	Fig. S2 IR spectrum of compounds 5-8	S3
III.	Fig. S3 ¹ H NMR spectrum of compound 1 in DMSO- d_6 .	S4
IV.	Fig. S4 ¹³ C NMR spectrum of compound 1 in DMSO- d_6 .	S4
V.	Fig. S5 ¹ H NMR spectrum of compound 2 in DMSO- d_6 .	S5
VI.	Fig. S6. ¹³ C NMR spectrum of compound 2 in DMSO- d_6 .	S5
VII.	Fig. S7 ¹ H NMR spectrum of compound 3 in DMSO- d_6 .	S 6
VIII.	Fig. S8 ¹³ C NMR spectrum of compound 3 in DMSO- d_6 .	S 6
IX.	Fig. S9 ¹ H NMR spectrum of compound 4 in DMSO- d_6 .	S7
Х.	Fig. S10 ¹³ C NMR spectrum of compound 4 in DMSO- d_6 .	S7
XI.	Fig. S11 ¹ H NMR spectrum of compound 5 in DMSO- d_6 .	S 8
XII.	Fig. S12 ¹³ C NMR spectrum of compound 5 in DMSO- d_6 .	S 8
XIII.	Fig. S13 ¹ H NMR spectrum of compound 6 in DMSO- d_6 .	S9
XIV.	Fig. S14 ¹³ C NMR spectrum of compound 6 in DMSO- d_6 .	S9
XV.	Fig. S15 ¹ H NMR spectrum of compound 7 in DMSO- d_6 .	S10
XVI.	Fig. S16 ¹³ C NMR spectrum of compound 7 in DMSO- d_6 .	S10
XVII.	Fig. S17 ¹ H NMR spectrum of compound 8 in DMSO- d_6 .	S11
XVIII.	Fig. S18 ¹³ C NMR spectrum of compound 8 in DMSO- d_6 .	S11
XIX.	Fig. S19 PXRD of 1-4 and 7.	S12
XX.	Fig. S20 Thermal atomic displacement ellipsoid plot of the structure of 1	S13
	grown from slow evaporation of water.	
XXI.	Fig. S21 View showing hydrogen bonding between two adjacent layers	S13
	in crystal of 1, with one layer highlighted in green for clarity.	
XXII.	Fig. S22 Thermal atomic displacement ellipsoid plot of the structure of 2	S14
	grown from slow evaporation of water.	
XXIII.	Fig. S23 View showing the adjacent stacking of layers in crystal of 2. For	S14
	clarity one layer is marked in green.	
XXIV.	Fig. S24 Thermal atomic displacement ellipsoid plot of the structure of 3	S15
	grown from slow evaporation of water.	
XXV.	Fig. S25 View showing hydrogen bonding between adjacent layers in	S15
	crystal of 3 , one layer highlighted in green for clarity.	

XXVI.	Fig. S26 Thermal atomic displacement ellipsoid plot of the structure of 4	S16
	grown from slow evaporation of water.	~
XXVII.	Fig. S27 View showing the packing of layers in crystal of 4. For clarity	S16
	one layer is marked in green.	
XXVIII.	Table S1 Hydrogen-bond geometry (Å, °) in structure of 1.	S17
XXIX.	Table S2 Hydrogen-bond geometry (Å, °) in structure of 2.	S17
XXX.	Table S3 Hydrogen-bond geometry (Å, °) in structure of 3.	S17
XXXI.	Table S4 Hydrogen-bond geometry (Å, °) in structure of 4.	S17
XXXII.	Fig. S28 Thermal atomic displacement ellipsoid plot of the structure of 5	S18
	grown from slow evaporation of methanol.	
XXXIII.	Fig. S29 View showing the packing of layers in crystal of 5	S18
XXXIV.	Fig. S30 Thermal atomic displacement ellipsoid plot of the structure of 7	S19
	grown from slow evaporation of acetic acid.	
XXXV.	Fig. S31 View showing the packing of layers in crystal of 7	S19
XXXVI.	Table S5 Hydrogen-bond geometry (Å, °) in structure of 5.	S19
XXVII.	Table S6 Hydrogen-bond geometry (Å, °) in structure of 7	S20
XXVIII.	Fig. S32 2D fingerprint plots with relative contributions in percentage	S20
	of various intermolecular contacts to HS area for 1.	
XXXIX.	Fig. S33 2D fingerprint plots with relative contributions in percentage	S21
	of various intermolecular contacts to HS area for 2.	
XL.	Fig. S34 2D fingerprint plots with relative contributions in percentage	S21
	of various intermolecular contacts to HS area for 3 .	
XLI.	Fig. S35 2D fingerprint plots with relative contributions in percentage	S22
	of various intermolecular contacts to HS area for 4.	
XLII.	Fig. S36 2D fingerprint plots with relative contributions in percentage	S22
	of various intermolecular contacts to HS area for 5.	
XLIII.	Fig. S37 2D fingerprint plots with relative contributions in percentage	S23
	of various intermolecular contacts to HS area for 7.	
XLIV.	Fig. S38 TGA curves of 1-4	S23
XLV.	Fig. S39 TGA curves of 5-8	S24
1		

Fig. S1 Infrared spectra of 1-4.

Fig. S2 Infrared spectra of 5-8.

Fig. S3 ¹H NMR spectrum 1 in DMSO- d_6 .

Fig. S4 ¹³C NMR spectrum 1 in DMSO- d_6 .

Fig. S5 ¹H NMR spectrum 2 in DMSO- d_6 .

Fig. S6 ¹³C NMR spectrum 2 in DMSO- d_6 .

Fig. S7 ¹H NMR spectrum 3 in DMSO- d_6 .

Fig. S8 13 C NMR spectrum 3 in DMSO- d_6 .

Fig. S9 ¹H NMR spectrum 4 in DMSO- d_6 .

Fig. S10 13 C NMR spectrum 4 in DMSO- d_6 .

Fig. S12 ¹³C NMR spectrum 5 in DMSO- d_6 .

Fig. S13 ¹H NMR spectrum 6 in DMSO- d_6 .

Fig. S14 ¹³C NMR spectrum 6 in DMSO- d_6 .

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Fig. S16 13 C NMR spectrum 7 in DMSO- d_6 .

Fig. S17 ¹H NMR spectrum 8 in DMSO- d_6 .

Fig. S18 13 C NMR spectrum 8 in DMSO- d_6 .

Fig. S19 PXRD of **1-4** and **5** and **7**. Comparison of the measured powder X-ray diffraction (in black) with simulated patterns (in red) calculated from single-crystal structures.

Fig. S20 Thermal atomic displacement ellipsoid plot of the structure of **1** grown from slow evaporation of water. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level and hydrogen atoms are represented by a sphere of arbitrary size.

Fig. S21 View showing hydrogen bonding between two adjacent layers in crystal of **1**, with one layer highlighted in green for clarity. Hydrogen bonds are represented by dashed lines. Unless stated otherwise, carbon atoms are shown in grey, hydrogen atoms in white, oxygen atoms in red and nitrogen atoms in blue.

Fig. S22 Thermal atomic displacement ellipsoid plot of the structure of **2** grown from slow evaporation of water. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level and hydrogen atoms are represented by a sphere of arbitrary size.

Fig. S23 View showing the adjacent stacking of layers in crystal of **2**. For clarity one layer is marked in green. Hydrogen bonds are represented by dashed lines. Unless stated otherwise, carbon atoms are shown in grey, hydrogen atoms in white, oxygen atoms in red and nitrogen atoms in blue.

Fig. S24 Thermal atomic displacement ellipsoid plot of the structure of **3** grown from slow evaporation of water. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level and hydrogen atoms are represented by a sphere of arbitrary size.

Fig. S25 View showing hydrogen bonding between adjacent layers in crystal of **3**, one layer highlighted in green for clarity. Hydrogen bonds are represented by dashed lines. Unless stated otherwise, carbon atoms are shown in grey, hydrogen atoms in white, oxygen atoms in red and nitrogen atoms in blue.

Fig. S26 Thermal atomic displacement ellipsoid plot of the structure of **4** grown from slow evaporation of water. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level and hydrogen atoms are represented by a sphere of arbitrary size.

Fig. S27 View showing the packing of layers in crystal of **4**. For clarity one layer is marked in green. Hydrogen bonds are represented by dashed lines. Unless stated otherwise, carbon atoms are shown in grey, hydrogen atoms in white, oxygen atoms in red and nitrogen atoms in blue.

Table S1 Hydrogen-bond geometry ((Å, °)	in structure of 1
-----------------------------------	--------	-------------------

<i>D</i> —Н··· <i>A</i>	<i>D</i> —Н	H···A	$D \cdots A$	D —Н···A	
O3—H3A····O2 ⁱ	0.849(15)	2.243(16)	3.0282(12)	153.9(19)	
O3—H3 <i>B</i> ⋯N2	0.847(14)	2.165(16)	2.9143(13)	147.4(17)	
O4—H4 <i>A</i> ···O3	0.865(13)	1.977(14)	2.8357(12)	171.7(16)	
O4— $H4B$ ···N2 ⁱⁱ	0.849(15)	2.243(16)	3.0282(12)	153.9(19)	
N6—H6A····O4 ⁱⁱⁱ	0.861(12)	2.287(14)	2.9830(13)	138.0(13)	
N6—H6 B ···N3 ^{iv}	0.864(13)	2.102(13)	2.9635(14)	174.6(14)	
N5—H5A····O4 ^v	0.856(13)	2.315(14)	3.1519(13)	165.8(14)	
N5—H5 <i>B</i> ····O3	0.845(13)	2.422(14)	3.1484(13)	144.5(14)	
Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1, y, -z+1/2$; (iii) $x+1/2, -y+1/2, z+1/2$; (iv) $-x+3/2, -y-1/2, -z+1$; (v) $-x+1$,					

y=1, -z+1/2.

Table S2 Hydrogen-bond geometry (Å, °) in structure of 2

<i>D</i> —Н··· <i>A</i>	<i>D</i> —Н	H···A	D ····A	D —Н···A	
N5—H5A···O3 ⁱ	0.85(2)	2.27(2)	2.9380(18)	134.8(19)	
N5—H5 <i>B</i> ····N3 ⁱⁱ	0.84(2)	2.22(2)	3.0547(19)	173.5(18)	
N6—H6A····O3 ⁱⁱⁱ	0.86(2)	2.13(2)	2.9826(18)	168.5(18)	
$N6-H6B\cdots N1^{iii}$	0.87(2)	2.32(2)	3.0822(19)	147.3(18)	
O3—H3 <i>A</i> …N2	0.83(2)	2.01(2)	2.8408(17)	173(2)	
$O3$ — $H3B$ ···· $O2^{iv}$	0.86(3)	1.97(3)	2.8235(17)	169(2)	
Summetry codes: (i) $-r+1$ $-v+1$ $-r+2$; (ii) $-r+1$ $-v$ $-r+2$; (iii) r $v-1$ r ; (iv) $-r+1$ $-v+2$ $-r+1$					

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) x, y-1, z; (iv) -x+1, -y+2, -z+1.

Table S3 Hydrogen-bond geometry (Å, °) in structure of 3

D —Н···A	<i>D</i> —Н	Н…А	D ···A	D —Н···A		
N5—H5A···N2 ⁱ	0.876(12)	2.280(12)	3.0880(12)	153.4(12)		
N5—H5 B ····O4 ⁱⁱ	0.881(12)	2.135(12)	3.0041(12)	169.1(13)		
N6—H6A····O4 ⁱⁱⁱ	0.879(12)	2.291(13)	2.9780(13)	134.9(12)		
N6—H6B···N3 ^{iv}	0.892(12)	2.110(13)	3.0005(13)	175.9(14)		
O3—H3A…N1	0.879(14)	1.930(14)	2.7983(10)	169.1(17)		
O4—H4 <i>A</i> ⋯O2	0.872(15)	2.051(15)	2.9105(12)	168.4(17)		
O4—H4 <i>B</i> ⋯O3	0.864(14)	1.908(14)	2.7711(12)	176.0(16)		
Symmetry codes: (i) $-r+1$ v $-z+1/2$: (ii) $r-1$ $-v+1$ $z-1/2$: (iii) $-r+3/2$ $v-1/2$ $-z+3/2$: (iv) $-r+1/2$ $-v+1/2$ $-z+1/2$						

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) x-1, -y+1, z-1/2; (iii) -x+3/2, y-1/2, -z+3/2; (iv) -x+1/2, -y+1/2, -z+1.

Table S4 Hydrogen-bond geometry (Å, °) in structure of 4

D —Н···A	<i>D</i> —Н	H··· <i>A</i>	D ···A	D —Н···A		
$N5A$ — $H5AA$ ···O2 A^{i}	0.892(14)	2.457(18)	3.1347(16)	133.1(17)		
$N5A$ — $H5AB$ ···· $N2A^{i}$	0.896(14)	2.042(14)	2.9372(18)	176(2)		
N6 <i>A</i> —H6 <i>AA</i> ···N4 <i>B</i>	0.896(13)	2.103(13)	2.9976(18)	176.8(17)		
$N6A - H6AB \cdots N1B^{ii}$	0.898(13)	2.303(15)	3.1199(16)	151.2(17)		
$N5B$ — $H5BB$ ···· $N2B^{iii}$	0.894(14)	2.099(14)	2.9904(18)	174.5(19)		
N6B—H6BA····N1 A^{iv}	0.894(13)	2.142(14)	2.9882(17)	157.7(16)		
N6 <i>B</i> —H6 <i>BB</i> ····N4 <i>A</i>	0.902(13)	2.078(13)	2.9764(18)	174.3(17)		
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+2$; (ii) $-x$, $-y+1$, $-z+2$; (iii) $-x$, $-y+1$, $-z+1$; (iv) $-x+1$, $-y+2$, $-z+1$.						

Fig. S28 Thermal atomic displacement ellipsoid plot of the structure of **5** grown from slow evaporation of methanol. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level and hydrogen atoms are represented by a sphere of arbitrary size.

Fig. S29 View showing the packing of layers in crystal of **5**. For clarity one layer is marked in green. Hydrogen bonds are represented by dashed lines. Unless stated otherwise, carbon atoms are shown in grey, hydrogen atoms in white, oxygen atoms in red and nitrogen atoms in blue.

Fig. S30 Thermal atomic displacement ellipsoid plot of the structure of 7 grown slow evaporation of acetic acid. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level and hydrogen atoms are represented by a sphere of arbitrary size.

Fig. S31 View showing the packing of layers in crystal of **7**. For clarity one layer is marked in green. Hydrogen bonds are represented by dashed lines. Unless stated otherwise, carbon atoms are shown in grey, hydrogen atoms in white, oxygen atoms in red and nitrogen atoms in blue.

Table S5 Hydrogen-bond geometry (Å, °) in structure of 5

D —Н···A	<i>D</i> —Н	H···A	D ····A	<i>D</i> —H··· <i>A</i>
N6—H6A…O1 ⁱ	0.906(13)	2.307(19)	3.037(2)	137(2)
N6—H6 <i>B</i> ⋯O1 ⁱⁱ	0.906(13)	2.071(15)	2.961(2)	167(2)
N5—H5A····N3 ⁱⁱⁱ	0.906(13)	2.087(13)	2.991(3)	176(3)
N1—H1· O2	0.906(13)	2.027(15)	2.907(2)	164(2)
N5—H5 <i>B</i> ⋯O1 ^{iv}	0.906(13)	2.00(2)	2.764(2)	141(3)
O2—H2A…N2 ^{iv}	0.851(2)	2.099(11)	2.928(2)	165(4)

Symmetry codes: (i) 1-x,1-y,1-z; (ii) 1+x,+y,1+z; (iii) 1-x,-y,2-z; (iv) -x,-y,1-z.

Table S6 Hydrogen-bond geo	ometry (Å, °) in structure of 7
----------------------------	---------------------------------

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D ···A	D —Н···A
N1—H1…I1	0.88	2.64	3.469(5)	158.5
N2— $H2$ ···I1 ⁱ	0.88	2.74	3.497(4)	145.1
N5—H5A····N3 ⁱⁱ	0.88	2.18	3.061(7)	178.4
N5—H5B…O1 ⁱⁱⁱ	0.88	2.22	2.828(6)	125.6
N6—H6A…O1 ^{iv}	0.88	1.97	2.843(6)	169.7
N6—H6B…I1 ^{iv}	0.88	3.02	3.736(4)	139.8

Symmetry codes: (i) 1-x,1-y,2-z; (ii) -x,2-y,1-z; (iii) 1-x,2-y,2-z; (iv) -1+x,+y,-1+z.

Fig. S32 2D fingerprint plots with relative contributions in percentage of various intermolecular contacts to HS area for 1.

Fig. S33 2D fingerprint plots with relative contributions in percentage of various intermolecular contacts to HS area for 2.

Fig. S34 (a) Molecular Hirshfeld d_{norm} , d_i and d_e surfaces mapped and (b) 2D fingerprint plots with relative contributions in percentage of various intermolecular contacts to HS area for 3.

Fig. S35 (a) Molecular Hirshfeld d_{norm} , d_i and d_e surfaces mapped and (b) 2D fingerprint plots with relative contributions in percentage of various intermolecular contacts to HS area for 4.

Fig. S36 (a) Molecular Hirshfeld d_{norm} , d_i and d_e surfaces mapped and (b) 2D fingerprint plots with relative contributions in percentage of various intermolecular contacts to HS area for 5.

Fig. S37 (a) Molecular Hirshfeld d_{norm} , d_i and d_e surfaces mapped and (b) 2D fingerprint plots with relative contributions in percentage of various intermolecular contacts to HS area for 7.

Fig. S38 Thermogravimetric analysis curves of 1-4.

Fig. S39 Thermogravimetric analysis curves of 5-8.