Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Halogen-bonded Liquid-crystalline Complexes Formed from 4-Alkoxyphenylpyridines with Iodine and with Interhalogens

Linda J. McAllister, James Taylor, Natalie E. Pridmore,

Alice J. McEllin, Adrian C. Whitwood, Peter B. Karadakov* and Duncan W. Bruce*

Department of Chemistry University of York Heslington YORK YO10 5DD (UK) Tel: (+44) 1904 324085 E-mail: <u>duncan.bruce@york.ac.uk</u>

Supplementary Information

Figure **S1** The aromatic region of the ¹H NMR spectrum of a) dodecyloxyphenylpyridine (12-OPhPy) and b) its complex with bromine (12-OPhPy…Br₂).

Figure S2 Crystal structures of the five complexes found in the CSD with a Type I I^{...}I motif.

Figure S3 The molecular structures of complexes between ICl and a) DMAP and b) trimethylsilyl-trimethylphosphoranimine.

Figure S4 The molecular structures of complexes between IBr and a) 2,2'-bipyridine and b) a DABCO derivative (c) tetra-2-pyridyl-pyrazine and (d) a 2-(phenylseleno)pyridine. Hydrogen atoms in the structure with 2,2'-bipyridine have not been included.

Figure S5 Hydrogen-bonded, dimeric arrangement for [4-OPhPyH]⁺Br⁻

Figure S6 Hydrogen-bonded, dimeric arrangement for [8-OPhPyH]⁺Br⁻

Figure S7 Hydrogen-bonded, dimeric arrangement for [12-OPhPyH]⁺Br⁻

Figure S8 Small-angle diffraction pattern for 12-OPhPy…ICl at 135 °C.

Figure S9 Small-angle diffraction pattern for 12-OPhPy $^{..}I_2$ at 110 °C showing the two small-angle reflections.

Experimental

 Table S1 Crystallographic parameters of (inter)halogen complexes.

	4-OPhPy ICl	4-OPhPy […] I₂	4-OPhPy IBr
CCDC Reference No.	2123967	2123968	2123969
Empirical formula	C ₁₅ H ₁₇ NOICI	$C_{15}H_{17}NOI_2$	$C_{15}H_{17}NOIBr$
Formula weight / g	389.64	481.09	434,11
mol ⁻¹	000101	101100	10 11 1
Т/К	110.05(10)	110.05(10)	110.05(10)
Wavelength (A)	0.7107	0.7107	0.7107
Crystal system	Iriclinic	Iriclinic	Iriclinic
Space group	P1 Colourloss	P1 Vallaur	P1 Colourloop
Colour	Diato	Plate	Diato
Unit coll dimonsions	Plate	Plate	Plate
α /Å	7.8428(3)	8.7375(3)	10.0323(4)
h/Å	8 7456(4)	9 2799(4)	11 3017(4)
ς /Å	11.7865(6)	10.6024(7)	15.5236(5)
α/°	81.274(4)	106.226(5)	106.418(3)
β/°	82.709(4)	98.182(4)	94.206(3)
v/°	72.451(4)	100.729(4)	113.861(4)
Volume / Å ³	757.89(6)	793.61(7)	1508.27(11)
Ζ	2	2	4
$ ho_{ m calc}$ / Mg m ⁻³	1.707	2.013	1.912
Absorption coefficient / mm ⁻¹	2.281	3.955	4.764
F(000)	384	456	840
Crystal size / mm ³	$\begin{array}{c} 0.23 \times 0.11 \times \\ 0.03 \end{array}$	$\begin{array}{c} 0.23 \times 0.11 \times \\ 0.01 \end{array}$	$\begin{array}{c} 0.16\times0.08\times\\ 0.01\end{array}$
hetarange for data collection	2.84 to 28.16 $^{\circ}$	2.95 to 28.11 $^\circ$	2.80 to 28.03 $^\circ$
	$-10 \le h \le 10$,	$-11 \le h \le 10$,	$-13 \le h \le 12$,
Index ranges	$-11 \le k \le 11$,	$-12 \le k \le 11$,	$-10 \le k \le 14$,
	$-15 \le l \le 14$	$-13 \le l \le 13$	$-20 \leq l \leq 20$
Reflections collected	8707	9193	11341
Independent	3180	3348	6069
reflections	$R_{(int)} = 0.0281$	$R_{(int)} = 0.0264$	$R_{(int)} = 0.0274$
Completeness	99.8% to A = 25.24°	99.8% to A- 25.24°	99.7% to A= 25.21°
Max and min	0.936 and	0.944 and	0.933 and
transmission	0 744	0.664	0.620
Data/restraints/		3348 / 20 /	0.020
parameters	3180/0/173	208	6069 / 0 / 345
Goodness-of-fit on F ²	1.041	1.087	1.046
Final R indices [I >	$R_1 = 0.0235$	$R_1 = 0.0242$	$R_1 = 0.0285$
2 <i>o</i> (I)]	$wR_2 = 0.0434$	$wR_2 = 0.0489$	$wR_2 = 0.0481$
R indices (all data)	$R_1 = 0.0280$	$R_1 = 0.0355$	$R_1 = 0.0395$
	$wR_2 = 0.0456$	$wR_2 = 0.0429$	$wR_2 = 0.0517$
Largest diff. peak and	0.45 and	0.69 and	0.59 and
hole	-0.46	-0.68	-0.58

	[10-OPhPyH]Br₃	[12-OPhPyH] ₂ Br ₃	[4-OPhPyH]Br	[6-OPhPyH]Br	[8-OPhPyH]Br	[12-OPhPyH]Br
CCDC Reference No.	2123970	2123971	2123972	2123966	2123973	2123974
Empirical formula	$C_{21}H_{30}Br_3NO$	C46H67Br3N2O2	C ₁₅ H ₁₈ BrNO	C ₁₇ H ₂₂ NOBr	C ₁₉ H ₂₆ BrNO	C ₂₃ H ₃₄ BrNO
Formula weight / g mol ⁻¹	552.19	919.75	308.21	336.26	364.32	420.42
Т/К	110.05(10)	110.05(10)	110.05(10)	110.05(10)	110.05(10)	110.05(10)
Wavelength (Å)	0.7107	0.7107	0.7107	0.7107	0.7107	0.7107
Crystal system	monoclinic	monoclinic	triclinic	Triclinic	triclinic	triclinic
Space group	P21/c	P21/c	РĪ	ΡĪ	РĪ	ΡĪ
Colour	Yellow	Yellow	light yellow	Yellow	colourless	yellow
Shape	Irregular	Irregular	plate	Plate	plate	needle
Unit cell dimensions <i>a</i> /Å	4.63873(14)	28.1904(12)	6.6716(3)	6.7843(3)	6.7554(3)	6.7504(3)
b/Å	56.6665(12)	9.1296(2)	8.3651(4)	8.3585(3)	8.4116(3)	8.3652(4)
c /Å	8.4248(2)	17.0705(6)	13.0803(6)	15.1607(7)	16.8284(7)	20.1363(10)
α / °	90.00	90.00	86.724(4)	97.295(3)	97.564(3)	81.710(4)
β/°	95.637(2)	98.313(4)	86.237(4)	93.314(4)	96.503(4)	86.632(4)
v/°	90.00	90.00	70.833(4)	111.978(4)	110.294(4)	70.675(4)
Volume / Å ³	2203.83(10)	4347.2(3)	687.56(6)	785.58(6)	876.00(6)	1061.71(9)
Z	4	4	2	2	2	2
$\rho_{\rm calc}$ / Mg m ⁻³	1.664	1.405	1.489	1.422	1.381	1.315
Absorption coefficient / mm ⁻¹	5.502	2.822	2.977	2.612	2.349	1.947
F(000)	1104.0	1912.0	316.0	348	380.0	444.0
Crystal size / mm ³	0.3087 imes 0.1563 imes	0.227 imes 0.157 imes	0.278 × 0.077 ×	0.3226 imes 0.1893 imes	0.303 × 0.169 ×	0.2183 × 0.0703 ×
	0.1294	0.046	0.031	0.0387	0.034	0.0616
heta range for data collection	3.02 to 30.03°	2.84 to 25.09°	2.96 to 30.03°	3.18 to 30.05°	3.1 to 30.08°	2.92 to 29.32°
Index ranges	<i>–</i> 6 ≤ h ≤ 6,	–21 ≤ h ≤ 33,	$-9 \le h \le 9,$	$-9 \le h \le 7,$	$-6 \le h \le 9$,	<i>−</i> 9 ≤ <i>h</i> ≤ 8,
	–79 ≤ k ≤ 59,	-10 ≤ k ≤ 8,	$-11 \le k \le 7,$	$-11 \le k \le 11$,	$-10 \le k \le 11,$	$-10 \le k \le 11,$
	<i>−</i> 6 ≤ l ≤ 11	–20 ≤ l ≤ 19	–18 ≤ / ≤ 16	−18 ≤ <i>l</i> ≤ 21	–23 ≤ / ≤ 23	− 15 ≤ <i>l</i> ≤ 27
Reflections collected	10718	15250	6296	6843	7701	7571
Independent reflections	6356	7698	4001	4465	5098	4902
	$[R_{int} = 0.0302]$	$[R_{int} = 0.0257]$	$[R_{int} = 0.0273]$	$[R_{(int)} = 0.0256]$	$[R_{int} = 0.0245]$	$[R_{int} = 0.0256]$
Completeness	98.9%	99.7%	99.3%	97.10%	99.2%	99.2
	to θ = 25.24°	to θ = 25.09°	to θ = 26.00°	to θ = 25.24°	to θ = 26.00°	to θ = 25.0°
Max. and min. transmission	0.567 and 0.365	0.883 and 0.657	0.912 and 0.724	0.906 and 0.486	0.924 and 0.591	0.942 and 0.869
Data/restraints/parameters	6356/0/240	7698/0/481	4001/0/168	4465 / 0 / 186	5098/0/204	4902/0/240
Goodness-of-fit on F ²	1.190	1.053	1.063	1.076	1.051	1.059
Final R indices $[l > 2\sigma(l)]$	$R_1 = 0.0586,$	$R_1 = 0.0393,$	$R_1 = 0.0373,$	$R_1 = 0.0367$	$R_1 = 0.0353,$	$R_1 = 0.0351,$
	$wR_2 = 0.0960$	$wR_2 = 0.0798$	$wR_2 = 0.0735$	$wR_2 = 0.0832$	$wR_2 = 0.0728$	$wR_2 = 0.0744$
R indices (all data)	$R_1 = 0.0742,$	$R_1 = 0.0715,$	$R_1 = 0.0458,$	$R_1 = 0.0460 \ wR_2 =$	$R_1 = 0.0453,$	$R_1 = 0.0439,$
	$wR_2 = 0.1021$	$wR_2 = 0.0919$	$wR_2 = 0.0779$	0.0890	$wR_2 = 0.0772$	$wR_2 = 0.0787$
Largest diff. peak and hole	0.68 and	0.63 and	0.71/-0.68	0.80 and -1.18	0.52/-0.34	0.53/-0.32
	-1.87	-0.44				

 Table S2 Crystallographic parameters of alkoxyphenylpyridinium salts.

Instrumentation

NMR spectra were obtained using either a Jeol ECS400 400 MHz, which operates at 400 MHz for ¹H spectroscopy or a Bruker AV500 500 MHz spectrometer, which operates at 500 MHz for ¹H spectroscopy. All spectra were obtained at ambient temperature using CDCl₃ as the solvent and as the internal standard for ¹H and ¹³C spectra. All chemical shifts are given in ppm.

Single crystal X-ray diffraction data were collected at 110 K on a Brucker Smart Apex diffractometer with MoK α radiation (λ = 0.71073 Å) using a SMART CCD camera.

Small angle X-ray scattering was performed using a Bruker D8 Discover equipped with a bespoke temperature-controlled, bored graphite rod furnace, custom built at the University of York. The radiation used was copper K_{α} (λ = 0.154056 nm) from a 1 μ S microfocus source. Diffraction patterns were recorded on a 2048 x 2048 pixel Bruker VANTEC 500 area detector set at a distance of 121 mm from the sample. Samples were filled into 0.9 mm capillary tubes.

Optical microscopy was performed using an Olympus BX50 microscope at X100 magnification. Temperature was controlled using a Linkam Scientific LTS 350 heating stage.

General Procedure for the Preparation of 4-Alkoxybromobenzene

$$Br \longrightarrow OH + BrC_nH_{2n+1} \longrightarrow Br \longrightarrow OC_nH_{2n+1}$$

4-Bromophenol (3.46 g, 20 mmol) and potassium carbonate (13.82 g, 100 mmol) were added to acetone (160 cm³) in a round-bottomed flask and the mixture was stirred for 10 min. A flow of nitrogen was passed through the equipment. The flask was heated under reflux at 60 °C. Once reflux was achieved 1-bromoalkane (26 mmol) was added dropwise to the flask. The reaction mixture was heated under reflux for 16 h whilst stirring. The mixture was filtered and the filtrate

was concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel eluted with 100:1 petroleum ether (40 – 60 °C): acetone.

4-Hexyloxybromobenzene

$$\begin{array}{c} a & b \\ \hline \\ Br \longrightarrow \\ \end{array} \begin{array}{c} c & d & e & f & g \\ \hline \\ OCH_2CH_2CH_2(CH_2)_2CH_3 \end{array}$$

Yield: 71%. ¹H NMR (400 MHz, CDCl₃): δ = 7.35 (2H, Ha, AA'XX', *J* = 9.0 Hz), 6.77 (2H, Hb, AA'XX', *J* = 8.9 Hz), 3.91 (2H, Hc, t, *J* = 6.6 Hz), 1.76 (2H, Hd, m), 1.44 (2H, He, m), 1.33 (4H, Hf, m), 0.90 (3H, Hg, t, *J* = 7.1 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 158.07, 132.00, 116.11, 112.36, 68.08, 31.39, 28.96, 25.50, 22.42, 13.86. Spectra for other homologues are essentially the same with a different integration in the ¹H NMR spectra for the peak at δ = 1.33 ppm and additional peaks in the high field region of the ¹³C NMR spectra corresponding to the alkyl chain.

General Procedure for the Synthesis of 4-Alkoxyphenylpyridines (n-OPhPy)

Potassium carbonate (7.7 g, 56 mmol) was dissolved in a mixture of water (20 cm³) and THF (40 cm³). This solution was added to 4-alkoxybromobenzene (14 mmol) in a round-bottomed flask under nitrogen. Tetrakis(triphenylphosphine)palladium(0) (0.485 g, 0.42 mmol) was added to the flask, which was then heated to 60 °C. A suspension of 4-pyridineboronic acid (2.46 g, 20 mmol) in THF (40 cm³) was added to the flask and the reaction mixture heated under reflux at 80 °C whilst stirring for 16 hours. The mixture was extracted with diethyl ether (100 cm³) and washed with NaOH solution (10% w/v, 50 cm³) and water (100 cm³). The organic layer was dried over anhydrous magnesium sulfate and, after filtration, the solvent was removed using a rotary evaporator. The crude product was purified by column chromatography on silica gel, eluting with 1:1 petroleum ether (40 – 60 °C): acetone (1% triethylamine). The product was crystallised from hot petroleum ether (40 – 60 °C) to give a colourless solid.

4-Hexyloxyphenylpyridine (6-OPhPy)

Yield: 28%. ¹H NMR (400 MHz, CDCl₃): δ = 8.61 (2H, Ha, AA'XX', *J* = 6.2 Hz), 7.59 (2H, Hc, AA'XX', *J* = 8.8 Hz), 7.47 (2H, Hb, AA'XX', *J* = 6.2 Hz), 7.00 (2H, Hd, AA'XX', *J* = 8.8 Hz), 4.01 (2H, He, t, *J* = 6.6 Hz), 1.81 (2H, Hf, m), 1.48 (2H, Hg, m), 1.35 (4H, Hh, m), 0.91 (3H, Hi, t, *J* = 7.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 159.96, 150.02, 147.68, 129.92, 127.93, 120.85, 114.90, 68.00, 31.41, 29.02, 25.55, 22.44, 13.88. Spectra of other homologues are essentially identical with different integration for the peak at δ = 1.35 ppm in the ¹H NMR spectra and additional peaks in the high field region of the ¹³C NMR spectra corresponding to atoms in the alkoxy chain.

Complex	Yield /	Ana	I. Calcd.	/ %	F	ound / ᠀	6
	%	С	Н	Ν	С	Н	Ν
4-OPhPy	23	79.3	7.5	6.2	78.9	7.5	6.0
6-OPhPy	28	80.0	8.3	5.5	79.0	8.2	5.4
8-OPhPy	24	80.5	8.9	4.9	79.5	8.9	4.7
10-OPhPy	52	81.0	9.4	4.5	80.6	9.4	4.5
12-OPhPy	59	81.4	9.8	4.1	81.3	9.8	4.0

Table **S3** Yields and elemental analysis of alkoxyphenylpyridines (*n*-OPhPy)

Halogen-Bonded Complexes between 4-Dodecyloxyphenylpyridine and Bromine

Bromine (0.0064 cm³, 0.125 mmol) was added to a solution of 4-decyloxyphenylpyridine (0.0425 g, 0.125 mmol) in hexane (20 cm³) in a round-bottomed flask. The reaction mixture was stirred at room temperature for 2 h. The precipitate was filtered, washed with hexane and dried under vacuum.

$$a b c d e f g h i$$

Br-Br...N, OCH₂CH₂CH₂(CH₂)₈CH₃

Yield: 52%

¹H NMR (CDCl₃, 400 MHz): δ = 8.55 (2H, Ha, AA'XX', *J* = 4.3 Hz), 7.61 (2H, Hc, AA'XX', *J* = 8.8 Hz), 7.56 (2H, Hb, AA'XX', *J* = 5.0 Hz), 7.01 (2H, Hd, AA'XX', *J* = 8.8 Hz), 4.02 (2H, He, t, *J* = 6.6 Hz), 1.81 (2H, Hf, m), 1.47 (2H, Hg, m), 1.26 (16H, Hh, m), 0.88 (3H, Hi, t, *J* = 6.8 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ = 193.72, 164.45, 128.71, 115.63, 104.60, 101.22, 99.23, 68.58, 40.77, 32.22, 29.96, 29.94, 29.87, 29.68, 29.66, 29.46, 26.31, 23.00, 14.44. Anal. Calcd. For C₂₃H₃₃NOBr₂: C, 55.3; H, 6.7; N, 2.8%. Found: C, 55.5; H, 6.7; N, 2.8%.

Halogen-Bonded Complexes between 4-Alkoxyphenylpyridines and Iodine

Iodine (0.0635 g, 0.25 mmol) in hexane (5 cm³) was added to a solution of 4-alkoxyphenylpyridine (0.25 mmol) in chloroform (5 cm³) in a round-bottomed flask. The reaction mixture was stirred at room temperature for 2 h. The precipitate was filtered, washed with hexane and dried under vacuum.

Iodine---4-Decyloxyphenylpyridine

a b c d e f g h i
I
$$-I$$
 \cdots N \longrightarrow -OCH₂CH₂CH₂(CH₂)₆CH₃

Yield: 30%. ¹H NMR (400 MHz, CDCl₃): δ = 8.57 (2H, Ha, AA'XX', *J* = 5.8 Hz), 7.59 (2H, Hc, AA'XX', *J* = 8.8 Hz), 7.49 (2H, Hb, AA'XX', *J* = 6.2 Hz), 7.00 (2H, Hd, AA'XX', *J* = 8.9 Hz), 4.01 (2H, He, t, *J* = 6.6 Hz), 1.81 (2H, Hf, m), 1.47 (2H, Hg, m), 1.28 (12H, Hh, m), 0.88 (3H, Hi, t, *J* = 6.8 Hz). Spectra for other homologues were effectively identical save for the integration of the signal at δ = 1.28.

Complex		An	al. Calcd.	/%	Fc	ound / %	
Complex	field / %	С	н	Ν	С	н	Ν
4-OPhPy…l₂	29	37.5	3.6	2.9	37.8	3.5	2.9
6-OPhPy…l₂	46	40.1	4.2	2.8	39.8	4.3	2.8
8-OPhPy…l₂	45	42.5	4.7	2.6	42.8	4.7	2.6
10-OPhPy…l₂	30	44.6	5.2	2.5	44.0	5.1	2.4
12-OPhPy…l ₂	24	46.6	5.6	2.4	46.4	5.5	2.3

Table S4 Yields and elemental analysis for complexes of iodine with alkoxyphenylpyridines (7-n).

Halogen-Bonded Complexes between Alkoxyphenylpyridines and Iodine Monochloride

Iodine monochloride (25 μ L, 0.5 mmol) in dry hexane (5 cm³) was added to a solution of alkoxyphenylpyridine (0.5 mmol) in chloroform (5 cm³) in a round-bottomed flask under a nitrogen atmosphere. The mixture was stirred at room temperature for 2 h. The precipitate was filtered, washed with dry hexane and dried under vacuum.

Iodine Monochloride…4-Hexyloxyphenylpyridine

Yield: 79%.¹H NMR (CDCl₃, 400 MHz): δ = 8.57 (2H, Ha, AA'XX', *J* = 5.0 Hz), 7.59 (2H, Hc, AA'XX', *J* = 8.8 Hz), 7.56 (2H, Hb, AA'XX', *J* = 5.8 Hz), 7.01 (2H, Hd, AA'XX', *J* = 8.8 Hz), 4.01 (2H, He, t, *J* = 6.6 Hz), 1.80 (2H, Hf, m), 1.46 (2H, Hg, m), 1.34 (4H, Hh, m), 0.90 (3H, Hi, t, *J* = 7.1 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ = 161.52, 148.28, 128.50, 123.22, 115.51, 100.89, 98.91, 68.34, 31.52, 29.06, 25.65, 22.58, 14.02. Spectra of other homologues are essentially identical with different integration of the peak at δ = 1.34 ppm in the ¹H NMR spectra and additional peaks in the high field region of the ¹³C NMR spectra corresponding to carbons in the alkoxy chain. Table shows the yields and results of elemental analysis for these complexes.

Table S5 Yields and elemental analysis for complexes of iodine monochloride with 4-alkoxyphenylpyridines (8-n).

Complex	Yield	Anal. Calcd. / %			Found / %		
Complex	/%	С	н	Ν	С	н	Ν
4-OPhPy…ICl	66	46.2	4.4	3.6	45.7	4.3	3.5
6-OPhPy…ICl	79	48.9	5.1	3.4	48.6	4.9	3.2
8-OPhPy…ICl	56	51.2	5.7	3.1	51.1	5.6	3.1
10-OPhPy…ICl	64	53.2	6.2	3.0	52.9	6.0	2.8
12-OPhPy…ICl	57	55.0	6.6	2.8	54.4	6.6	2.8

Halogen bonded complexes between 4-alkoxyphenylpyridines and iodine monobromide

Iodine monobromide (0.1034 g, 0.5 mmol) in dry hexane (5 cm³) was added to a solution of 4alkoxyphenylpyridine (0.5 mmol) in chloroform (5 cm³) in a round-bottomed flask under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 2 h. The precipitate was filtered, washed with dry hexane and dried under vacuum.

Iodine Monobromide-4-Hexyloxyphenylpyridine

$$a b c d e f g h i$$

Br-I \cdots N OCH₂CH₂CH₂(CH₂)₂CH₃

Yield: 64%. ¹H NMR (400 MHz, CDCl₃): δ = 8.56 (2H, Ha, AA'XX', *J* = 6.5 Hz), 7.60 (2H, Hc, AA'XX', *J* = 8.8 Hz), 7.56 (2H, Hb, AA'XX', *J* = 6.5 Hz), 7.02 (2H, Hd, AA'XX', *J* = 8.8 Hz), 4.02 (2H, He, t, *J* = 6.6 Hz), 1.81 (2H, Hf, m), 1.48 (2H, Hg, m), 1.35 (4H, Hh, m), 0.91 (3H, Hi, t, *J* = 7.1 Hz). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ = 161.35, 151.31, 147.93, 128.44, 123.07, 115.46, 106.05, 68.31, 31.52, 29.07, 25.65, 22.57, 14.02. Spectra for other homologues were essentially identical with different integration of the peak at δ = 1.35 ppm in the ¹H NMR spectra and additional peaks in the high field region of the ¹³C NMR spectra corresponding to carbon atoms in the alkoxy chain.

Complex		Ana	al. Calcd.	/ %	Fo	ound / %	
	field / %	С	н	Ν	С	н	Ν
4-OPhPy…IBr	58	41.5	4.0	3.2	41.1	3.9	3.2
6-OPhPy…IBr	64	44.2	4.6	3.0	43.8	4.5	2.9
8-OPhPy…IBr	63	46.6	5.1	2.9	46.2	4.9	2.5
10-OPhPy…IBr	76	48.7	5.6	2.7	48.2	5.5	2.6
12-OPhPy…IBr	74	50.6	6.1	2.6	50.4	5.8	2.4

Table S6 Yields and elemental analysis for complexes of iodine monobromide with 4-alkoxyphenylpyridine.

Computational Details

All calculations reported in this paper were carried out using GAUSSIAN.⁵¹ The geometries of the monomers and complexes between I₂, ICl, IBr and Br₂ and methoxyphenylpyridine were optimised at the MP2 and M06-2X levels of theory. The geometries of the complexes between I₂, ICl, IBr and Br₂ and pyridine were optimised at the M06-2X level of theory. For iodine, in all calculations use was made of the aug-cc-pVDZ-PP basis set with effective core potentials (ECPs). In the M06-2X calculations all other atoms were assigned aug-cc-pVDZ basis sets. To reduce computational effort without a significant decrease in accuracy, in the MP2 calculations aug-cc-pVDZ basis sets were used for the dihalogen (except iodine, see above) and the pyridyl ring, while smaller cc-pVDZ basis sets were used for atoms from the phenyl ring and the methoxy substituent, which are not directly involved in the interaction. The MP2(Full) keyword was employed to include correlation effects for all electrons. The M06-2X functional was chosen because it was found to produce geometries for the halogen-bonded complexes which are in close agreement with those obtained at the MP2 level of theory.

Vibrational frequencies were calculated to ensure that optimised geometries correspond to local minima on the potential energy surface. The M06-2X calculations were carried out using the pruned "UltraFine" integration grid. The geometries of all complexes were optimised using the

-S16-

Boys-Bernardi counterpoise correction (CP)^{S2} to reduce the basis set superposition error (BSSE), separating each complex into two fragments, one of which is the dihalogen. Binding energies were calculated by subtracting the sum of the energies of the monomers from the energy of the complex.

M06-2X Energies and Optimized Geometries of All Complexes

All geometries are in the respective standard orientations used by GAUSSIAN,⁵² all coordinates in Å.

1-OPhPy...Br₂

СР	corrected er	nergy: -5742.	.0562 Ha
С	1.736688	0.100853	-0.036492
С	0.985257	1.208512	0.377299
С	-0.402998	1.136536	0.367219
Ν	-1.063122	0.044399	-0.021585
С	-0.363664	-1.020003	-0.418594
С	1.026024	-1.035625	-0.444304
С	3.215761	0.130229	-0.041478
С	3.912987	1.307501	-0.360918
С	5.297065	1.338305	-0.368299
С	6.027528	0.185928	-0.045360
С	5.352566	-0.994857	0.279200
С	3.957854	-1.009842	0.273416
Н	1.473875	2.114014	0.731533
Н	-1.015651	1.979217	0.689269
Н	-0.945386	-1.886733	-0.734116
Н	1.547049	-1.920052	-0.805499
Н	3.360951	2.205298	-0.636144
Н	5.842231	2.243202	-0.628670
Н	5.893273	-1.898880	0.543826
Н	3.443052	-1.928771	0.551430
0	7.376495	0.314215	-0.074484
С	8.147939	-0.830812	0.241194
Н	9.191859	-0.521425	0.158123
Н	7.946992	-1.646743	-0.467231
Н	7.944195	-1.170841	1.266260
Br	-3.521921	-0.017431	0.003261
Br	-5.895524	-0.082374	0.029335

4-OPhPy...Br₂

СР	corrected	energy:	-5859.9527	На
С	0.362139	0.254571	-0.070845	
С	-0.432901	1.304334	0.407937	
С	-1.816581	1.171549	0.405952	

N -2.432352 0.073185 -0.034738 C -1.691328 -0.936788 -0.493792 C -0.302719 -0.889196 -0.532339 С 1.838074 0.350199 -0.087144 C 2.479204 1.573117 -0.346379 С 3.860412 1.666146 -0.364258 C 4.646094 0.532050 -0.112161 C 4.026251 -0.693855 0.151882 C 2.633887 -0.771043 0.157173 H 0.019346 2.210550 0.805840 H -2.462147 1.968050 0.777533 H -2.237944 -1.810659 -0.849717 H 0.252634 -1.729296 -0.944560 H 1.885080 2.459178 -0.566901 H 4.361290 2.607874 -0.578901 H 4.609453 -1.585640 0.361068 H 2.163526 -1.725999 0.388151 0 5.986451 0.721941 -0.145697 C 6.824834 -0.401952 0.096343 H 6.615640 -1.184075 -0.650600 H 6.613719 -0.809376 1.097722 C 8.264375 0.058742 -0.000213 H 8.428950 0.861043 0.731843 H 8.432221 0.489655 -0.996644 C 9.243084 -1.086194 0.247603 H 9.055923 -1.518002 1.241485 H 9.059837 -1.887751 -0.482584 C 10.696736 -0.631818 0.153396 H 10.908272 0.150309 0.893884 H 10.911735 -0.220672 -0.841385 H 11.386510 -1.464518 0.332804 Br -4.881707 -0.092359 0.015792 Br -7.251394 -0.253288 0.070230

1-OPhPy...I₂

CP corrected energy: -1184.9684 Ha (ECP basis on I) С 2.739419 0.116043 -0.058475 С 1.992182 1.227150 0.353860 С 0.604085 1.165347 0.333334 Ν -0.064006 0.079755 -0.065036 С 0.633883 -0.987484 -0.462117 С 2.022995 -1.012762 -0.477545 С 4.218244 0.133538 -0.049260 С 4.928149 1.307777 -0.351711 С 6.312333 1.327210 -0.344614 С 7.030027 0.166223 -0.023338 С -1.011674 6.342165 0.284524

С	4.947661	-1.015274	0.263916
Н	2.483795	2.127686	0.716321
Н	-0.002792	2.012047	0.655939
Н	0.050453	-1.850050	-0.786016
Н	2.539590	-1.899633	-0.838909
Н	4.386496	2.212375	-0.625297
Н	6.867568	2.229614	-0.591924
Н	6.872757	-1.922092	0.547636
Н	4.422771	-1.932185	0.529375
0	8.379835	0.283689	-0.037108
С	9.139031	-0.869961	0.277692
Н	10.186092	-0.568099	0.207972
Н	8.939165	-1.678635	-0.439252
Н	8.921791	-1.216149	1.297884
Ι	-2.658725	0.011742	-0.018391
Ι	-5.411452	-0.080034	0.048595

4-OPhPy...I₂

СР	corrected e	nergy: -1302.	.8649 Ha (ECP	basis	on	I)
С	1.475953	0.282729	-0.091459			
С	0.686105	1.334040	0.392660			
С	-0.697936	1.211787	0.384132			
Ν	-1.323305	0.121833	-0.068215			
С	-0.584815	-0.889256	-0.533134			
С	0.803720	-0.851595	-0.565612			
С	2.952217	0.367063	-0.099588			
С	3.603963	1.588338	-0.339896			
С	4.985788	1.670909	-0.349093			
С	5.761432	0.527704	-0.106623			
С	5.130813	-0.696763	0.138466			
С	3.738023	-0.763390	0.134846			
Н	1.142638	2.233590	0.800499			
Н	-1.336994	2.011196	0.760855			
Н	-1.134213	-1.757218	-0.899270			
Н	1.353676	-1.692670	-0.982884			
Н	3.018042	2.481716	-0.552649			
Н	5.495044	2.611338	-0.549130			
Н	5.706099	-1.595440	0.339835			
Н	3.259349	-1.717585	0.351401			
0	7.102935	0.707842	-0.129856			
С	7.931976	-0.424966	0.104018			
Н	7.722122	-1.196398	-0.653740			
Н	7.711338	-0.842742	1.099026			
С	9.375230	0.026833	0.022440			
Н	9.540425	0.819106	0.765198			
Н	9.552653	0.468479	-0.967600			
С	10.344345	-1.127798	0.262930			
Н	10.160601	-1.919187	-0.478140			
Н	10.147549	-1.570234	1.250247			
С	11.801650	-0.682295	0.183979			
Н	12.013473	0.089295	0.935353			

Н	12.484471	-1.521858	0.357853
Н	12.026176	-0.260621	-0.804257
Ι	-3.910706	-0.035423	-0.007665
Ι	-6.660494	-0.202245	0.073992

1-OPhPy...IBr

СР	corrected en	ergy: -3463.	.5223 Ha (ECP	basis	on
С	2.134781	0.098011	-0.032326		
С	1.382120	1.207598	0.375348		
С	-0.004733	1.136643	0.367496		
Ν	-0.665030	0.039824	-0.014850		
С	0.035426	-1.028482	-0.406515		
С	1.423710	-1.041474	-0.432358		
С	3.612773	0.128780	-0.039378		
С	4.308010	1.308082	-0.356616		
С	5.691705	1.340104	-0.366289		
С	6.423879	0.187383	-0.047161		
С	5.750582	-0.995206	0.275533		
С	4.356237	-1.011837	0.271284		
Н	1.869269	2.115855	0.723872		
Н	-0.617874	1.980382	0.684838		
Н	-0.546120	-1.896931	-0.716612		
Н	1.943857	-1.928058	-0.788890		
Н	3.755236	2.206180	-0.629273		
Н	6.235662	2.246023	-0.625458		
Н	6.292751	-1.899111	0.537382		
Н	3.843342	-1.932166	0.548128		
0	7.771565	0.317169	-0.077902		
С	8.546074	-0.827500	0.233746		
Н	9.589052	-0.515516	0.149589		
Н	8.345405	-1.641706	-0.476598		
Н	8.344610	-1.170020	1.258337		
Ι	-3.161137	-0.014944	0.003532		
Br	-5.742731	-0.074333	0.023373		

4-OPhPy...IBr

СР	corrected	energy:	-3581.4	188 Ha	(ECP	basis	on	I)
C	0.8329	991 0.	257792	-0.06	51085			
C	0.0389	987 1.	313775	0.40	96780			
C	-1.3436	512 1.	185161	0.40	97656			
Ν	-1.9620	908 0.	081172	-0.02	21460			
C	-1.2219	975 -0.	936791	-0.47	70427			
C	0.1652	217 -0.	890077	-0.50	9260			
C	2.3079	927 0.	351589	-0.08	30349			
C	2.9494	489 1.	573941	-0.34	12432			
C	4.3303	397 1.	665286	-0.36	53694			
C	5.115	545 0.	530446	-0.11	L1477			
C	4.4949	945 -0.	694733	0.15	55805			
C	3.1028	381 -0.	770628	0.16	53668			

I)

Н	0.491662	2.223843	0.794702
Н	-1.987810	1.986323	0.770606
Н	-1.770268	-1.813067	-0.816883
Н	0.717794	-1.735844	-0.912995
Н	2.356419	2.460527	-0.563550
Н	4.831909	2.605998	-0.581079
Н	5.077814	-1.586602	0.365352
Н	2.632602	-1.724934	0.397414
0	6.454847	0.718911	-0.148159
С	7.294207	-0.405157	0.093420
Н	7.082784	-1.187883	-0.652142
Н	7.085233	-0.810770	1.095893
С	8.733336	0.055640	-0.007400
Н	8.898653	0.485083	-1.004865
Н	8.899639	0.858947	0.723128
С	9.712674	-1.088966	0.239642
Н	9.527702	-1.891562	-0.488956
Н	9.528064	-1.519309	1.234628
С	11.165982	-0.634436	0.141102
Н	11.856228	-1.466810	0.320000
Н	11.378443	-0.224770	-0.854818
Н	11.379284	0.148751	0.879939
I	-4.451615	-0.074533	0.014842
Br	-7.029406	-0.235835	0.053451

1-OPhPy...ICl

СР	corrected ene	rgy: -1349	.5260 Ha (ECP	basis	on I)
С	1.494365	0.097631	-0.035984		
С	0.739412	1.205792	0.371443		
С	-0.647125	1.132378	0.363870		
Ν	-1.305232	0.033878	-0.018467		
С	-0.602628	-1.033231	-0.410601		
С	0.785442	-1.043103	-0.436399		
С	2.972196	0.130707	-0.041901		
С	3.666047	1.311309	-0.357399		
С	5.049683	1.345249	-0.365646		
С	5.783165	0.193273	-0.046685		
С	5.111209	-0.990561	0.274326		
С	3.716942	-1.009164	0.268569		
Н	1.224632	2.114998	0.720088		
Н	-1.262295	1.974416	0.681478		
Н	-1.182868	-1.902521	-0.720474		
Н	1.307211	-1.928664	-0.792992		
Н	3.112333	2.208889	-0.629851		
Н	5.592649	2.252136	-0.623490		
Н	5.654378	-1.893896	0.536052		
Н	3.205110	-1.930435	0.544226		
0	7.130603	0.324968	-0.075844		
С	7.906470	-0.818791	0.235993		
Н	8.949067	-0.505177	0.153291		
Н	7.707862	-1.632798	-0.475145		

Н	7.704263	-1.162248	1.260116
Ι	-3.776216	-0.032934	0.009164
C1	-6.213658	-0.106767	0.039971

4-OPhPy...ICl

СР	corrected ener	rgy: -1467	.4225 Ha (EC	P basis on I)
С	0.150492	0.247012	-0.081038	3	ĺ
С	-0.648807	1.295408	0.394893	3	
С	-2.030534	1.159610	0.396475	5	
Ν	-2.643418	0.055186	-0.040285		
С	-1.898368	-0.955203	-0.498879)	
С	-0.511741	-0.900349	-0.538735	5	
С	1.624949	0.346981	-0.096753	3	
С	2.262587	1.574075	-0.346002	2	
С	3.643196	1.670966	-0.361411	L	
С	4.431903	0.537090	-0.115795	5	
С	3.815141	-0.692876	0.138188	3	
С	2.423429	-0.774288	0.140186	5	
Н	-0.200768	2.204697	0.789878	3	
Н	-2.678949	1.953735	0.767006	5	
Н	-2.442699	-1.831579	-0.850991	L	
Н	0.044867	-1.740030	-0.949485	5	
Н	1.666860	2.460304	-0.561366	5	
Н	4.141784	2.615523	-0.568593	3	
Н	4.400706	-1.584255	0.342176	5	
Н	1.956129	-1.732399	0.364103	3	
0	5.770514	0.731082	-0.144954	ŀ	
С	6.613123	-0.391394	0.093105	5	
Н	6.409682	-1.169091	-0.659897	7	
Н	6.399439	-0.805677	1.091020)	
С	8.050978	0.075934	0.005290)	
Н	8.209290	0.874063	0.743234	ŀ	
Н	8.221185	0.513859	-0.987646	5	
С	9.033084	-1.066847	0.249884	ŀ	
Н	8.856419	-1.864152	-0.486543	3	
Н	8.843160	-1.506048	1.239986	5	
С	10.485266	-0.605931	0.165430)	
Н	10.690298	0.171821	0.912304	ŀ	
Н	11.177438	-1.437143	0.342260)	
Н	10.703161	-0.187126	-0.825496	5	
Ι	-5.105848	-0.129556	0.029814	ŀ	
C1	-7.536262	-0.319183	0.111206	5	

Py...Br₂

СР	corrected ene	rgy: -5396.5	5603 Ha
Ν	0.00000	0.000000	-1.774816
С	0.00000	1.150935	-2.448875
С	0.00000	-1.150935	-2.448875
С	0.00000	-1.199816	-3.841167

С	0.000000	-0.000000	-4.548352
С	0.000000	1.199816	-3.841167
Н	0.000000	2.060343	-1.846969
Н	0.000000	-2.060343	-1.846969
Н	0.000000	-2.160108	-4.352621
Н	0.000000	0.00000	-5.637588
Н	0.000000	2.160108	-4.352621
Br	0.000000	0.000000	3.086127
Br	0.000000	0.00000	0.720475

Py…l₂

СР	corrected e	nergy: -839.4	1726 Ha (ECP	basis	on I)
Ν	0.000000	0.000000	-2.467874		
С	0.000000	1.151029	-3.144271		
С	0.000000	-1.151029	-3.144271		
С	0.000000	-1.199580	-4.536121		
С	0.000000	-0.000000	-5.243610		
С	0.000000	1.199580	-4.536121		
Н	0.000000	2.061553	-2.543976		
Н	0.000000	-2.061553	-2.543976		
Н	0.000000	-2.160090	-5.047044		
Н	0.000000	0.000000	-6.332814		
Н	0.000000	2.160090	-5.047044		
I	0.000000	0.000000	2.905819		
Ι	0.000000	0.00000	0.158640		

Py...IBr

CP corrected energy: -3118.0259 Ha (ECP basis on I)

Ν	0.000000	0.00000	-1.948119
С	0.000000	1.153310	-2.621574
С	0.000000	-1.153310	-2.621574
С	0.000000	-1.199930	-4.012753
С	0.000000	0.000000	-4.719706
С	0.000000	1.199930	-4.012753
Н	0.000000	2.061794	-2.018833
Н	0.000000	-2.061794	-2.018833
Н	0.000000	-2.160292	-4.523686
Н	0.000000	0.000000	-5.808820
Н	0.000000	2.160292	-4.523686
Br	0.000000	-0.000000	3.146738
I	0.000000	-0.000000	0.572170

Py...ICl

СР	corrected	energy:	-1004	.0294	На	(ECP	basis	on	I)
Ν	0.00000	0.0	000000	-1.	403	321			
С	0.00000	90 1.1	153739	-2.	076	629			

С	0.000000	-1.153739	-2.076629
С	0.000000	-1.199931	-3.467616
С	0.000000	-0.000000	-4.174551
С	0.000000	1.199931	-3.467616
Н	0.000000	2.061783	-1.473404
Н	0.000000	-2.061783	-1.473404
Н	0.000000	-2.160295	-3.978473
Н	0.000000	-0.000000	-5.263648
Н	0.000000	2.160295	-3.978473
C1	0.000000	0.00000	3.520840
I	0.000000	0.000000	1.088955

References

S1 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553-566.

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016; see http://www.gaussian.com/.