A *de novo* strategy for the development of a Zn^{II}–organic framework based luminescent "switch-on" assay for size-exclusive sensitization of the oxidised form of glutathione (GSSG) over the reduced form (GSH): insights into the sensing mechanism through DFT

Sourav Bej,^[ab] Riyanka Das,^[ab] Debojyoti Kundu,^[ab] Tapan K. Pal^[c] and Priyabrata Banerjee*^[ab]

* E-mail: <u>pr_banerjee@cmeri.res.in</u> & <u>priyabrata_banerjee@yahoo.co.in</u> Webpage: <u>www.cmeri.res.in</u> & <u>www.priyabratabanerjee.in</u> Fax: +91-343-2546745; Tel: +91-343-6452220.

^a Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.

^b Academy of Scientific & Innovative Research (AcSIR), Ghaziabad – 201002, Uttar Pradesh, India

^c Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar- 382426, Gujarat, India

SI.	Description	Entry
No.		
1	FE-SEM and EDX mapping images of Zn-CMERI	Fig. S1
2	TGA of Zn-CMERI	Fig. S2
3	Powder XRD (PXRD) studies of Zn-CMERI in different experimental conditions	Fig. S3
4	UV-vis spectra of Zn-CMERI and the co-ligands; fluorescence emission spectra of co-ligands & Zn-CMERI	Fig. S4
5	UV-vis DRS spectra of Zn-CMERI before and after interaction with GSSG & LOD plot	Fig. S5
6	Comparative literature survey of Zn-CMERI with recently reported thiol sensors	Table S1
7	Recyclability of Zn-CMERI	Fig. S6
8	FE-SEM and EDX images of Zn-CMERI before and after interaction with GSSG	Fig. S7
9	FTIR spectra of Zn-CMERI before and after interaction with GSSG	Fig. S8
10	Selectivity studies of Zn-CMERI towards different bio-hazards	Fig. S9
11	Interference experimentations of Zn-CMERI towards GSSG in presence of other biohazards	Fig. S10
12	Effect of pH on the sensing phenomenon & PXRD spectra at different pH	Fig. S11
13	N_2 sorption analysis with BJH plot	Fig. S12
14	HOMO-LUMO plots of co-ligand assemblies in Zn-CMERI	Fig. S13
15	Cyclic voltammograms of co-ligands	Fig. S14
16	Total energy of the asymmetric unit of Zn-CMERI before and after interaction with different biothiols	Fig. S15
17	Truth Table of Zn-CMERI with GSSG	Table S2

Fig. S1 (a) FE-SEM image of Zn-CMERI, (b) EDX mapping images of carbon, nitrogen, oxygen and Zn.

Thermogravimetric analysis (TGA) and framework rigidity of Zn-CMERI

TGA was carried out at a temperature range between 0-600 °C with a heating rate of 5 °C/min under nitrogenous environment. The MOF is quite stable upto ~350 °C and the thermal decomposition is presumably due to release of uncoordinated guest solvent molecules. Beyond 350 °C the framework started gradual decomposition.

Fig. S2 TGA curve of Zn-CMERI in nitrogen gas medium with a heating rate of 5°C/min.

Fig. S3 (a) PXRD pattern of as-synthesised Zn-CMERI with its simulated spectra, (b) Different PXRD patterns of Zn-CMERI confirming its structural stability

Fig. S4 (A) UV-vis spectra of Zn-CMERI and the co-ligands; fluorescence emission spectra of (B) Phen, (C) H₂ITA and (D) Zn-CMERI.

Fig. S5 (a) UV-vis DRS (Diffuse Reflection Spectroscopy) spectra of **Zn-CMERI** before and after interaction with GSSG, **(b)** Change of (I/I_0) -1 as the linear function of the concentration of GSSG for the calculation of LOD of **Zn-CMERI** towards GSSG.

SI. No.	Chemosensor	Type of analy	Type of Chemosen sor	Method of detectio	pH rang e	LOD	Respon se time	Biological Applicati ons	Applicati on in molecul	Ref
		le		1					circuitry	
1	PSMOF	GSH	MOF	Colorime try	4	~0.6 8 µM		Detection from the HeLa and LO2 cells	NA	1
2	Cu-MOF(II)	GSH	MOF	Colorime try	7	0.97 μM		Detection from serum samples	NA	2
3	Eu(DTBA)	GSH	MOF	Fluorime try		0.35 μΜ	~180 s	HEP 1-6 and Hacat cells in the CCK-8 assay	NA	3
4	ZIF-67	GSH	Nanosheet s of a metal organic framework (MOF)	Colorime try	5.5	0.07 μM		Detection from human serum samples	NA	4
5	Ni/Fe MOF nanosheet	GSH	Nanosheet s of a metal organic framework (MOF)	Colorime try	3	10 nM		NA	NA	5

Fable S1: Comparative literature surv	y of Zn-CMERI with recent	ly reported chemosensors for GSSG/GSH
---------------------------------------	----------------------------------	---------------------------------------

6	GSSH-2TPE		Peptide	Fluorime try	NA	1.5 nM	~60 s	Detection from HeLa cells	NA	6
7	Eu ³⁺ /Cu ²⁺ @ UiO-67- bpydc	GSH	MOF	Fluorime try	7.0	54.3 nM	~150 s	Detection from human serum samples	NA	7
8	UiO-66-NH ₂ MOF	GSH	MOF	Fluorime try	7.3	0.57 μM	NA	Detection from human serum samples	NA	8
9	CIA	GSSG	Small molecule	Fluorime try	7.5	0.22 6 mM	NA	NA	NA	9
1 0	UiO-68- An/Ma	GSH	MOF	Fluorime try	NA	50 μΜ	NA	NA	NA	10
1 1	Zn-CMERI	GSSG	MOF	Fluorime try	6-8	34 nM (20. 8 ppb)	~12 sec	Detection from urine and serum samples	Yes	Prese nt work

Fig. S6 Recyclable nature of Zn-CMERI towards GSSG upto 3 cycles without any hassle.

Fig. S7 (a) FE-SEM image of unaffected needle shaped morphology of **Zn-CMERI** after interaction with GSSG, **(b)** EDX mapping image of **Zn-CMERI**@GSSG confirming presence of respective elements.

Fig. S8 FTIR spectra of Zn-CMERI before and after interaction with GSSG.

Fig. S9 Selectivity studies of Zn-CMERI towards different biologically relevant interferents in similar sensing environment.

Fig. S10 Relative fluorescence intensity of **Zn-CMERI** towards GSSG in presence of different biologically relevant interferents in similar sensing environment.

Fig. S11 (a) Effect of fluorescence emission intensity of **Zn-CMERI** at 415 nm at different pH (λ_{ex} =290 nm), **(b)** PXRD spectra of **Zn-CMERI** at different pH.

Fig. S12 N₂ sorption analysis of **Zn-CMERI** at 77K; inset: pore size distribution of **Zn-CMERI** as derived from BJH method.

Fig. S13 (A) HOMO and (B) LUMO of the co-ligands assembly in Zn-CMERI

Fig. S14 Cyclic voltammogram of Phen and HIPA in acetonitrile using tetrabutylammonium hexafluorophosphate as supporting electrolyte, scan rate= 0.05 V/s.

Fig. S15 Total energy values of **(a) Zn-CMERI** MOF fragment and **Zn-CMERI** MOF fragment with **(b)** Cys, **(c)** Hcy, **(d)** GSH and **(e)** GSSG respectively.

Table S2 Truth table presenting output at the emission wavelength of 415 nm for the chemosensor, **Zn-CMERI** in presence of the targeted analyte, GSSG

IN 1	IN2	OUT1
(Zn-CMERI)	(GSSG)	(415 nm)
0	0	0
0	1	0
1	0	0
1	1	1

References

- 1 Y. Liu, M. Zhou, W. Cao, X. Wang, Q. Wang, S. Li and H. Wei, *Anal. Chem.*, 2019, **91**, 8170–8175.
- 2 J. Wang, W. Li and Y.-Q. Zheng, *Analyst*, 2019, **144**, 6041–6047.
- 3 M. M. Zhu, Y. P. Liu, C. Xia, H. R. Zeng, S. Hu, D. Y. Jiang, G. H. Zhou and H. L. Li, *SSRN Electron. J.*, , DOI:10.2139/ssrn.4084528.
- 4 Y. Zhang, C. Dai, W. Liu, Y. Wang, F. Ding, P. Zou, X. Wang, Q. Zhao and H. Rao, *Microchim. Acta*, 2019, **186**, 340.
- 5 Q. Li, Q. Wang, Y. Li, X. Zhang and Y. Huang, *Anal. Methods*, 2021, **13**, 2066–2074.
- 6 S. Gui, Y. Huang, Y. Zhu, Y. Jin and R. Zhao, *ACS Appl. Mater. Interfaces*, 2019, **11**, 5804–5811.
- 7 J. Zhu, Y. Tang, Y. Yang, B. Li, Y. Cui and G. Qian, *Microporous Mesoporous Mater.*, 2019, **288**, 109610.

- 8 N. Wang, M. Xie, M. Wang, Z. Li and X. Su, *Talanta*, 2020, **220**, 121352.
- 9 P. Ravichandiran, D. S. Prabakaran, N. Maroli, A. Boguszewska-Czubara, M. Masłyk, A. R. Kim, B. Chandrasekaran and D. J. Yoo, *Anal. Chim. Acta*, 2021, **1181**, 338896.
- 10 B. Gui, Y. Meng, Y. Xie, J. Tian, G. Yu, W. Zeng, G. Zhang, S. Gong, C. Yang, D. Zhang and C. Wang, *Adv. Mater.*, 2018, **30**, 1802329.