SUPPLEMENTARY MATERIAL

Discerning Subtle High-Pressure Phase Transitions in Glyphosate.

Cameron J. G. Wilson,^a Peter A. Wood^b and Simon Parsons^a

a Centre for Science at Extreme Conditions, School of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UK.

b The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK

Contents

Section A: Occupied volume calculations	3
Section B: Supplementary Tables	5
High pressure crystallography	5
Strain Tensor Results	8
Section C: Supplementary figures	10

Section A: Occupied volume calculations

N randomly-generated points are placed in the unit cell (volume *V*); those within the van der Waals radius of any atom are classified as lying in the space occupied by the network of atoms and their contacts, the remainder sample the void space. If there are N_{net} points within the network, an estimate of the network volume V_{net} is given by $(N_{net}/N)V$. The void volume is then $V_{void} = V - V_{net}$. This is implemented in the CellVol code.¹ The volume estimates converge as *N* increases, and in this work a value of N = 1 million yielded a standard deviation of $\leq 0.1\%$ of the network volume when the calculation was executed three times (Figure S1).

The uncertainties in the experimental structural parameters were propagated by repeating the above calculation using 50 structures in which the coordinates were perturbed with Gaussian random numbers taken from the distribution defined by each coordinate's standard uncertainty. The 50 calculations yield a distribution of V_{net} and V_{void} from which the standard uncertainties of each can be evaluated. Since precision is not defined for DFT-optimised structures, the standard uncertainty of V_{net} and V_{void} reflect only the reproducibility of each Monte Carlo run, typically, as indicated above, $\leq 0.1\%$ of the network volume.

In an effort to identify which intermolecular interactions undergo the largest changes at the transitions, the volumes of the glyphosate molecule and each of the intermolecular dimers, A-H, were calculated by placing a box around them. The box is defined by producing a reference frame based on the three principal inertial axes of the molecules using the algorithm described by Gavezzotti.² The atomic coordinates of all the points within the molecules were used to construct an inertial matrix, ignoring atomic masses, and the eigenvalues of this matrix used to define the principal moments of inertia. The origin of our inertial reference frame is then taken as the centre of all atomic coordinates with the eigenvectors of the inertial matrix defining the rotation matrix between the original and inertial reference frame. By expressing the atomic coordinates within the inertial axes can then be located. These are used to define the box extended in all three dimensions beyond these values by a set length (2.5 Å in this work). When calculated for a single isolated molecule, the longest inertial axes is defined as the long axes of the molecule, used for discussions of the second transition within the main body of the text. The occupied volume

was then evaluated using a similar Monte Carlo procedure to that described above for unit cells.

The same procedure can be applied to dimers and clusters of molecules extracted from the crystal structure.

Section B: Supplementary Tables

High pressure crystallography: Crystal and refinement data

Pressure /GPa	0, DAC	0.206	0.302	0.645	0.934	1.210	1.609	1.940		
Crystal data										
Temperature (K)	293	293	293	293	293	293	293	293		
Spacegroup	P21/c	P21/c	P21/c	P21/c	$P2_1/c$	P21/c	P21/c	$P2_1/c$		
- F	8.6693(13)	8.6720(6)	8.6626(10)	8.6567(16)	8.6512(13)	8.6419(10)	8.6334(14)	8.6285(9)		
a, b, c (Å)	7.9704(6)	7.9508(3)	7.9208(4)	7.8828(7)	7.8496(6)	7.8197(4)	7.7827(7)	7.7531(4)		
- / - / - / /	9.8968(7)	9.8213(3)	9,7820(5)	9.7114(9)	9.6513(8)	9.6036(6)	9.5468(9)	9,4944(5)		
β (°)	105.644(9)	106.235(4)	106.599(7)	107.244(11)	107.785(9)	108.174(7)	108.729(10)	109.104(5)		
V (Å ³)	658.51(12)	650.17(6)	643.22(9)	632.91(15)	624.08(12)	616.61(9)	607.49(13)	600.17(8)		
Z	4	4	4	4	4	4	4	4		
μ (mm ⁻¹)	0.203	0.206	0.208	0.211	0.214	0.217	0.220	0.223		
Crystal size (mm)	0.15 ×	0.19 ×	0.15 ×	0.15 ×	0.15 ×	0.15 ×	0.15 ×	0.19 ×		
- / (/	0.135 ×	0.17 ×	0.135 ×	0.135 ×	0.135 ×	0.135 ×	0.135 ×	0.17 X		
	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		
			Da	ta Collection						
Wavelength (Å)	0.56086	0.56086	0.56086	0.56086	0.56086	0.56086	0.56086	0.56086		
Absorption	0.0895.	0.0581.	0.0856.	0.0912.	0.0833.	0.0884.	0.0855.	0.0589.		
correction (wR^{2}_{hef}	0.0623	0.0477	0.0589	0.0666	0.0627	0.0645	0.0635	0.0464		
wR^{2}_{aft} , max : min	0.6587	0.8968	0.6493	0.7006	0.7371	0.6571	0.7825	0.8885		
transmission)										
Tmin. Tmax	0.4904.	0.6677.	0.4834.	0.5216.	0.5488.	0.4892.	0.5826.	0.6615.		
	0.7445	0.7445	0.7445	0.7445	0.7445	0.7445	0.7445	0.7445		
Measured.	3682. 517.	5852.511.	5682.517.	5611, 506.	5430, 490,	5409, 494,	5243, 471,	5320, 468,		
independent and	365	435	376	375	383	382	373	416		
observed										
reflections										
R _{int}	0.0762	0.0422	0.0703	0.0783	0.0738	0.0724	0.0762	0.0363		
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	0.625	0.627	0.625	0.625	0.625	0.627	0.625	0.626		
			F	Refinement						
$R[F^2 > 2\sigma(F^2)].$	0.0413,	0.0253,	0.0369,	0.0352,	0.0375,	0.0365,	0.0298,	0.0236,		
$wR(F^2)$. S	0.1108.	0.0642.	0.1008.	0.0937.	0.0820.	0.0946.	0.0720.	0.0622.		
(<i>n</i> -	1.069	1.071	1.052	1.097	1.052	1.042	1.067	1.103		
Data	0.394	0.391	0.404	0.400	0.395	0.399	0.391	0.393		
completeness										
No. of reflections	517	511	517	506	490	494	471	468		
No. of parameters	93	93	93	93	94	93	93	93		
No. of restraints	82	82	82	82	82	82	82	82		
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.216, -	0.103, -	0.208, -	0.214, -	0.165, -	0.189, -	0.134, -	0.120, -		
	0.242	0.144	0.283	0.238	0.168	0.212	0.132	0.138		

 Table S1: Experimental parameters by high-pressure single-crystal measurements.

Pressure /GPa	2.244	2.410	3.117	3.630	3.783	4.228	4.813	5.176		
Crystal data										
Temperature (K)	293	293	293	293	293	293	293	293		
Spacegroup	P21/c	P2₁/c	P21/c	P21/c	P21/c	P21/c	P21/c	P21/c		
	8.6185(7)	8.616(5)	8.5889(9)	8.5740(13)	8.562(2)	8.5435(9)	8.526(2)	8.496(5)		
a, b, c (Å)	7.7238(3)	7.706(2)	7.6517(4)	7.6158(5)	7.6058(9)	7.5706(4)	7.5312(9)	7.510(2)		
	9.4573(4)	9.438(3)	9.3709(5)	9.3347(7)	9.3306(12)	9.2993(5)	9.2654(12)	9.249(3)		
β (°)	109.454(4)	109.78(3)	110.256(5)	110.657(7)	110.868(13)	111.200(6)	111.625(13)	111.96(3)		
V (Å ³)	593.61(6)	589.6(4)	577.77(8)	570.35(11)	567.79(18)	560.77(8)	553.06(17)	547.3(4)		
Ζ	4	4	4	4	4	4	4	4		
μ (mm⁻¹)	0.225	0.227	0.231	0.234	0.235	0.238	0.242	0.244		
Crystal size (mm)	$0.19 \times$	$0.15 \times$	$0.19 \times$	$0.19 \times$	$0.15 \times$	$0.15 \times$	0.15 ×	0.15 ×		
	$0.17 \times$	$0.135 \times$	0.17 ×	0.17 ×	0.135 ×	0.135 ×	0.135 ×	$0.135 \times$		
	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		
			Data	a Collection						
Wavelength (Å)	0.56086	0.56086	0.56086	0.56086	0.56086	0.56086	0.56086	0.56086		
Absorption	0.0580,	0.0823,	0.0562,	0.0759,	0.0830,	0.0732,	0.0679,	0.0697,		
correction (<i>wR</i> ² _{bef} ,	0.0473,	0.0662,	0.0466,	0.0600,	0.0617,	0.0614,	0.0568,	0.0560,		
wR ² aft, max : min	0.8547	0.7907	0.8880	0.7511	0.8156	0.8109	0.8423	0.8176		
transmission)										
T _{min} , T _{max}	0.6363,	0.5887,	0.6611,	0.5592,	0.6072,	0.6037,	0.6271,	0.6087,		
	0.7445	0.7445	0.7445	0.7445	0.7445	0.7445	0.7445	0.7445		
Measured,	5389, 468,	4649,	5234, 466,	5032, 446,	4804, 532,	4847, 527,	4936, 526,	4692,		
independent and	411	479, 376	418	399	408	412	420	551, 426		
observed reflections										
R _{int}	0.0378	0.0740	0.0371	0.0502	0.0726	0.0701	0.0619	0.0587		
(sin θ/λ) _{max} (Å ⁻¹)	0.627	0.625	0.627	0.626	0.630	0.625	0.625	0.625		
			Re	efinement						
$R[F^2>2\sigma(F^2)],$	0.0242,	0.0348,	0.0236,	0.0262,	0.0397,	0.0366,	0.0333,	0.0377,		
<i>wR</i> (F²), S	0.0658,	0.0760,	0.0624,	0.0659,	0.0920,	0.0883,	0.0797,	0.0985,		
	1.097	1.038	1.093	1.141	1.045	1.092	1.106	1.139		
Data completeness	0.390	0.402	0.397	0.388	0.464	0.467	0.471	0.497		
No. of reflections	468	479	466	446	532	527	526	551		
No. of parameters	93	93	93	93	93	93	93	93		
No. of restraints	82	82	82	82	82	82	82	82		
Δho_{max} , Δho_{min} (e Å ⁻³)	0.111, -	0.188, -	0.127, -	0.117, -	0.208, -	0.202, -	0.206, -	0.222, -		
	0.144	0.188	0.137	0.139	0.250	0.234	0.274	0.279		

Pressure /GPa	0, fibre					
Crustal data						
Caseserature (K)	270					
Spacegroup	PZ_{1}/C					
- h - (Å)	8.0704(5) 7.0722(5)					
<i>u, b, c</i> (A)	7.9722(5)					
0 (°)	9.8883(0)					
P()	105.091(2)					
V (A ²)	058.48(7)					
Z (mm ⁻¹)	4					
μ (mm ⁻)	0.384					
Crystal size (mm)	0.15 X					
	0.135 ×					
	0.05					
Data Collectio	on					
Wavelength (A)	0.71073					
Absorption	0.0923,					
correction (<i>wR</i> ² _{bef} ,	0.0443,					
WR^{2}_{aft} , max : min	0.9144					
transmission)						
T _{min} , T _{max}	0.6822,					
	0.7461					
Measured,	12666,					
independent and	1981,					
observed reflections	1747					
R _{int}	0.0318					
(sin θ/λ) _{max} (Å ⁻¹)	0.715					
Refinement						
$R[F^2>2\sigma(F^2)],$	0.0285,					
<i>wR</i> (F ²), S	0.0805,					
	1.112					
Data completeness	0.982					
No. of reflections	1981					
No. of parameters	93					
No. of restraints	0					
Δho_{max} , Δho_{min} (e Å ⁻³)	0.419, -					
	0.324					

Strain Tensor Results

The Strain tensor was calculated as described in ref.³ Eigenvalues and vectors were calculated using JACOBI from ref.⁴ Results at each pressure are represented below in Table S2. Table S3 features these results scaled by GPa which are plotted in Figure S4. Glyphosate shows remarkably 2D compression with strain axes 1 barely varying from zero. After a minor increase, this strain axes decreases indicating minor negative linear compressibility.

Pressure									
/GPa	1	2	3	а	b	С	α	β	γ
0	0	0	0	8.669	7.97	9.897	90	105.644	90
0.206	0.001613	-0.00246	-0.01187	8.672	7.951	9.821	90	106.235	90
0.302	0.001687	-0.00622	-0.01886	8.663	7.921	9.782	90	106.599	90
0.645	0.002734	-0.01099	-0.03112	8.657	7.883	9.711	90	107.244	90
0.934	0.003467	-0.01516	-0.0415	8.651	7.85	9.651	90	107.785	90
1.21	0.003363	-0.01891	-0.04944	8.642	7.82	9.604	90	108.174	90
1.609	0.003856	-0.02355	-0.05981	8.633	7.783	9.547	90	108.729	90
1.94	0.003874	-0.02726	-0.06788	8.628	7.753	9.494	90	109.104	90
2.244	0.003668	-0.03094	-0.07463	8.618	7.724	9.457	90	109.454	90
2.41	0.004416	-0.03319	-0.07967	8.616	7.706	9.438	90	109.782	90
3.117	0.002475	-0.03999	-0.0904	8.589	7.652	9.371	90	110.256	90
3.63	0.00201	-0.04449	-0.09778	8.574	7.616	9.335	90	110.657	90
3.783	0.001865	-0.04574	-0.10068	8.562	7.606	9.331	90	110.868	90
4.228	0.000852	-0.05016	-0.10708	8.543	7.571	9.299	90	111.2	90
4.813	0.000292	-0.0551	-0.11468	8.526	7.531	9.265	90	111.625	90
5.176	-0.00119	-0.05781	-0.12043	8.496	7.51	9.249	90	111.961	90

 Table S2: Calculated strain axes in glyphosate.

Pressure									
/GPa	1	2	3	а	b	с	α	β	γ
0	0	0	0	8.669	7.97	9.897	90	105.644	90
0.206	0.007829	-0.01194	-0.05763	8.672	7.951	9.821	90	106.235	90
0.302	0.005587	-0.02061	-0.06246	8.663	7.921	9.782	90	106.599	90
0.645	0.004239	-0.01704	-0.04825	8.657	7.883	9.711	90	107.244	90
0.934	0.003712	-0.01623	-0.04443	8.651	7.85	9.651	90	107.785	90
1.21	0.002779	-0.01563	-0.04086	8.642	7.82	9.604	90	108.174	90
1.609	0.002396	-0.01464	-0.03717	8.633	7.783	9.547	90	108.729	90
1.94	0.001997	-0.01405	-0.03499	8.628	7.753	9.494	90	109.104	90
2.244	0.001635	-0.01379	-0.03326	8.618	7.724	9.457	90	109.454	90
2.41	0.001832	-0.01377	-0.03306	8.616	7.706	9.438	90	109.782	90
3.117	0.000794	-0.01283	-0.029	8.589	7.652	9.371	90	110.256	90
3.63	0.000554	-0.01226	-0.02694	8.574	7.616	9.335	90	110.657	90
3.783	0.000493	-0.01209	-0.02661	8.562	7.606	9.331	90	110.868	90
4.228	0.000201	-0.01186	-0.02533	8.543	7.571	9.299	90	111.2	90
4.813	0.000061	-0.01145	-0.02383	8.526	7.531	9.265	90	111.625	90
5.176	-0.00023	-0.01117	-0.02327	8.496	7.51	9.249	90	111.961	90

Table S3: Calculated strain axes scaled by GPa.

Section C: Supplementary figures

Figure S1: Convergence of points per CellVol calculation

Figure S2: Contacts which make up the inter (left) and intra (right) volumes presented in the main body of the paper. Note that labels refer to molecule - molecule interactions, as listed in Table 1 of the main text, rather than individual contacts such as H-bonds.

Figure S3: Molecular volume in each contact listed in Table 1 of the main text. A consistent set of vertical axes is used across all contacts to aid comparison.

Figure S4: Eigenvalues of the strain tensor per GPa as a function of pressure.

- 1. C. J. G. Wilson, T. Cervenka, P. A. Wood and S. Parsons, *Cryst. Growth Des.*, 2022, **22**, 2328-2341.
- 2. A. Gavezzotti, *Molecular Aggregation*, Oxford University Press: Oxford , UK, 2007.
- 3. R. M. Hazen, Finger, L. W., *Comparative Crystal Chemistry*, John Wiley & Sons, 1982.
- 4. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, *Numerical recipes in fortran: The art of scientific computing*, Cambridge University Press, Cambridge, UK, 2 edn., 1992.