Supporting Information

B, N-codoped and C-coated Co₂P Composite Derived from Phytate

Derivatives as High Efficiency HER Electrocatalyst

Dilnur Kurbanjan,^a Xiaoxi Li,^a Hong Du^{a,b *}

^a College of Chemistry and Chemical Engineering, Xinjiang Normal University,

Urumqi, 830054, China

^b Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi, 830054, China

*Corresponding Author:

175790509@ qq.com (Prof. Hong Du)

The calculation process of C_{dl:}

First, we measured CV in a range of 0.05 V to 0.2 V vs. Ag/AgCl (0.5 M H_2SO_4 solution) at different scan rates (20, 40, 60, 80 and 100 mV/s). Under each scan rate, the measurements were repeated three cycles to reduce errors. The measured CV results of Co₂P@BNC and Co₂P@NC are presented in . Fig. 5(b) and (c).

Second, the double-layer capacitance C_{dl} was estimated by plotting the Δj (Y-axis in Fig. 5d) = $(j_a - j_c)$ at 0.12 V (where j_c and j_a are the cathodic and anodic current densities, respectively) against the scan rate (X-axis in Fig. 5d) for Co₂P@BNC and Co₂P@NC, in which the slope was twice that of C_{dl} .

Take Co₂P@BNC as an example:

The following are the j_a and j_c values for Co₂P@BNC (at 0.12 V and different scan rates 20, 100 mV/s.):

 $j_{a}(20) = 1.30 \text{ mA/cm}^{2}, j_{a}(100) = 5.81 \text{ mA/cm}^{2};$ $j_{c}(20) = -1.48 \text{ mA/cm}^{2}, j_{c}(100) = -6.04 \text{ mA/cm}^{2};$ $\Delta j = (j_{a} - j_{c}) \text{ values: } \Delta j(20) = 2.78 \text{ mA/cm}^{2}, \Delta j(100) = 11.85 \text{ mA/cm}^{2},$ $\Delta j = \frac{\Delta j}{100} - \frac{\Delta j}{200} \times \frac{1}{2} = 0.0566875 F \text{ cm}^{-2}$ $C_{dl} = 0.0566875 \text{ F cm}^{-2} \times 1000 \approx 56.69 \text{ mF cm}^{-2}$

Fig. S1 Corresponding size distribution of (a) Co₂P@NC and (b) Co₂P@BNC.

Fig. S2 High-resolution XPS spectra of N 1s (a), C 1s (b) for Co₂P@NC and Co₂P@BNC.

Fig. S3 (a) Polarization curves for $Co_2P@NC$ initial and after 5000 CV scanning between - 0.3 and 0.2 V vs. RHE. (b) Timedependent current density curve for $Co_2P@NC$ under a current density of 10 mV/cm² for 10 h.

Table S1 Comparison of HER performance for $Co_2P@BNC$ with recently reported TMP-basedand state-of-theart metallic electrocatalysts in acidic media.

Catalysts	Electrolytes	η@10mA·cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
Co ₂ P@BNC	0.5 M H ₂ SO ₄	75	56	This work
CoP/S	0.5 M H ₂ SO ₄	107	57	Appl. Catal. B: Environ. 2019, 251, 213.

MoP/SNG-20	0.5 M H ₂ SO ₄	99	54.41	ACS Catal. 2017, 7, 3030.
Ni-CoP/HPFs	0.5 M H ₂ SO ₄	144	52	Nano Energy 2019, 56, 411.
NiCoP NS/NF	0.5 M H ₂ SO ₄	80	-	J. Am. Chem. Soc. 2018, 140, 5241.
NiCo ₂ Px	0.5 M H ₂ SO ₄	104	59.6	Adv. Mater. 2017, 29, 1605502.
Fe-Co ₂ P/NCNTs	0.5 M H ₂ SO ₄	104	68	ACS Appl. Mater. Interfaces 2016, 8, 13890.
CoP/NCNHP	0.5 M H ₂ SO ₄	140	53	J. Am. Chem. Soc. 2018, 140, 2610.
CoP@PS/NCNT	0.5 M H ₂ SO ₄	80	53	Adv. Energy Mater. 2018, 1702806.
CoP/CNTs	0.5 M H ₂ SO ₄	76	67	Adv. Funct. Mater. 2017, 1606635.
CoP-CNTs hybrids	0.5 M H ₂ SO ₄	139	52	Small 2017, 13, 1602873.
CoP/CNTs	0.5 M H ₂ SO ₄	122	54	Angew. Chem. Int. Ed. 2014, 53, 6710.
S-MoP NPL	0.5 M H ₂ SO ₄	86	34	ACS Catal. 2019, 9, 651.
Co _{0.6} Fe _{0.4} P/CNTs	0.5 M H ₂ SO ₄	67	57	Adv. Funct. Mater. 2017, 27, 1606635.
Co _{0.59} Fe _{0.41} P nanocubes	0.5 M H ₂ SO ₄	72	52	Nanoscale. 2015, 7, 11055.
МоР@С	0.5 M H ₂ SO ₄	88	50.4	Adv. Energy Mater. 2018, 8, 1801258.
MoP@PC	0.5 M H ₂ SO ₄	153	66	Angew. Chem. Int. Ed. 2016, 55, 12854.
Co-Fe-P nanotubes	0.5 M H ₂ SO ₄	80	72	Nano Energy 2019, 56, 225.

Abbreviations: SN = Sulfur and nitrogen dual-doped; G = Graphene; HPFs = hollow polyhedron frames; NS = nanosheet; NF = nickel foam; CNT = Carbon nanotube; NCNHP = N-doped carbon nanotube hollow polyhedron; NPL = nanoporous layer; C = Carbon; PC = Porous carbon.