Supporting Information

Importance of the non-covalent interactions on the coordination geometry of Ni(II) in Ni(II)-M(II) complexes (M = Zn and Hg) with a salen type N_2O_2 Schiff base ligand and thiocyanate as coligand

Lakshmi Kanta Das^a, Pradip Bhunia^b, Rosa M. Gomila^c, Antonio Frontera^{c*} and Ashutosh Ghosh^{b,d*}

^{*a*}Department of Chemistry, Government General Degree College, Kharagpur-II, Ambigeria, Madpur, Paschim Medinipur-721149, West Bengal, India.

^bDepartment of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.

^cDepartament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5,

07122 Palma de Mallorca (Baleares), Spain; E-mail: toni.frontera@uib.es

^{*d*}Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India; Email: <u>ghosh 59@yahoo.com</u> (Corresponding author)

Fig. S1. IR spectrum of complex 1.

Fig. S2. IR spectrum of complex 2.

Fig. S3. Spectrophotometric titration of the metalloligand $(5 \times 10^{-5} \text{ M})$ by a mixture of $\text{Zn}(\text{NO}_3)_2$ ($5 \times 10^{-3} \text{ M}$) and NH₄SCN ($1 \times 10^{-2} \text{ M}$) in methanol. The range of concentration in the figure indicates their final concentration in solution.

Bond distances (Å)			
1		2	
Zn(1)-O(1)	1.950(2)	Hg(1)-S(1)	2.383(3)
Zn (1)-O(2)	1.959(2)	Hg(1)-S(2)	2.411(3)
Zn (1)-N(3)	1.934(3)	Hg(1)-O(1)	2.410(5)
Zn (1)-N(4)	1.939(2)	Hg(1)-O(2)	2.588(4)
$Ni(1)-S(1)^{a}$	2.557(2)	Ni(1)-O(1)	1.869(5)
Ni(1)-S(2) ^b	2.703(2)	Ni(1)-O(2)	1.844(5)
Ni(1)-O(1)	2.008(2)	Ni(1)-N(1)	1.871(6)
Ni(1)-O(2)	2.027(2)	Ni(1)-N(2)	1.868(6)
Ni(1)-N(1)	2.008(2)		
Ni(1)-N(2)	2.007(2)		
Bond angles (°)			
1		2	
O(1)-Zn(1)-O(2)	81.90(7)	S(1)-Hg(1)-S(2)	155.97(9)
O(1)-Zn(1)-N(3)	113.97(10)	S(1)-Hg(1)-O(1)	101.60(15)
O(1)-Zn(1)-N(4)	114.97(9)	S(1)-Hg(1)-O(2)	100.53(13)
O(2)-Zn(1)-N(3)	121.70(9)	S(2)-Hg(1)-O(1)	102.22(15)
O(2)-Zn(1)-N(4)	110.02(9)	S(2)-Hg(1)-O(2)	88.91(12)
N(3)-Zn(1)-N(4)	111.46(11)	O(1)-Hg(1)-O(2)	59.21(15)
$S(1)^{a}-Ni(1)-S(2)^{b}$	168.11(3)	O(1)-Ni(1)-O(2)	83.6(2)
$S(1)^{a}-Ni(1)-O(1)$	89.96(6)	O(1)-Ni(1)-N(1)	91.3(2)
$S(1)^{a}-Ni(1)-O(2)$	82.91(5)	O(1)-Ni(1)-N(2)	169.3(3)
$S(1)^{a}-Ni(1)-N(1)$	99.08(6)	O(2)-Ni(1)-N(1)	168.7(2)
$S(1)^{a}-Ni(1)-N(2)$	90.99(7)	O(2)-Ni(1)-N(2)	94.8(2)
$S(2)^{b}-Ni(1)-O(1)$	89.26(6)	N(1)-Ni(1)-N(2)	92.1(3)
$S(2)^{b}-Ni(1)-O(2)$	85.30(5)		
$S(2)^{b}-Ni(1)-N(1)$	92.80(6)		
$S(2)^{b}-Ni(1)-N(2)$	87.56(7)		
O(1)-Ni(1)-O(2)	78.83(7)		
O(1)-Ni(1)-N(1)	90.97(9)		
O(1)-Ni(1)-N(2)	169.00(8)		
O(2)-Ni(1)-N(1)	169.64(9)		
O(2)-Ni(1)-N(2)	90.41(8)		
N(1)-Ni(1)-N(2)	99.70(10)		

Table S1. Bond distances (Å) and angles (°) around metal atoms for complexes 1 and 2.

Symmetry transformation a = 1-x, -y, 1-z and b = 1-x, 1-y, -z for 1 and a = 1-x, -y, 1-z for 2