Supporting Information

A Series of Cation-Modified Zirconium-Based Metal-Organic Frameworks for Carbon Dioxide Capture

Guoyu Zhang ^a, Feng Xie ^a, Thomas M. Osborn Popp ^a, Akash Patel ^a, Eder Moisés Cedeño Morales ^b, Kui Tan ^b, Ryan Crichton ^a, Gene Hall ^a, Jianyuan Zhang ^a, Andrew J. Nieuwkoop ^a, and Jing Li ^a*

^a Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, USA

^b Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA

Table of Contents

S1. Materials	. 3
S2. Characterization of Ligands	. 3
S3. Powder X-Ray Diffraction (PXRD) Patterns	. 4
S4. FT-IR Measurements	. 5
S5. X-Ray Fluorescence (XRF) Spectra	. 6
S6. X-ray Photoelectron Spectroscopy (XPS) Data	. 8
S7. Gas Adsorption Measurements	. 9
S8. Solid-State NMR Analysis	11
S9. Thermogravimetric Analysis (TGA)	11

S1. Materials

Reagents and solvents were used as received from: *Alfa-Aesar*: Formic acid (97%), zirconium dichloride oxide octahydrate (98%), potassium phosphate (97%), 1,2,4,5-tetrabromo-3,6-dimethyl-benzene (99%+), lithium hydroxide (97%), potassium hydroxide (98%), calcium hydroxide (99.5%), dichloromethane (99.5%), methanol (99.9%), DMF (99%) ethyl acetate (99%); *Acros Organics*: 2,4-methoxycarbonylphenylboronic acid (98%), sodium hydroxide (99%); *Oakwood Chemical*: Sodium sulfate anhydrous (99%); tert-butyl alcohol (99%) *Merk*: Potassium permanganate (99%); *VWR*: hydrochloric acid (36.5%-38%), nitric acid (concentrated), acetic acid (99%); *Strem Chemical*: Pd(PPh₃)₄; PraxAir: N₂ (99.99%), CO₂ (99.9%)

S2. Characterizations of Ligands

Figure S1. ¹H-500hz-DMSO NMR of 1,2,4,5-tetrakis(4-carboxyphenyl)-3,6-dimethyl-benzene (H₄tcpb-(Me)₂).

Figure S2. ¹H-500hz-DMSO NMR of 1,2,4,5-tetrakis(4-carboxyphenyl)-3,6-dicarboxyl-benzene (H₄tcpb-(COOH)₂).

S3. Powder X-Ray Diffraction (PXRD) Patterns

Powder X-ray diffraction (PXRD) analyses were performed using a Rigaku Ultima-IVdiffractometer at room temperature under Cu K α radiation (λ = 1.5406 Å). Data were collected at room temperature in a 2 θ range of 3-40°, with the operating power set to 40 kV/44 mA. The scan rate was 2°/min, with a step size of 0.2°.

Figure S3. PXRD patterns of Zr-tcpb-COOH (a) and Zr-tcpb-COOCa (b) taken after being treated under various chemical conditions along with those of as-made samples.

S4. FT-IR Measurements

IR measurements were performed on a Nicolet 6700 FTIR spectrometer equipped with a liquid N₂-cooled mercury cadmium telluride MCT-A detector. The sample of MOF compound (~2 mg) was pressed onto a KBr pellet and placed into a vacuum cell placed at the focal point of the sample compartment of the infrared spectrometer. The cell was connected to a vacuum line for evacuation. All spectra were recorded under vacuum (base pressure < 20 mTorr) in transmission mode with a frequency range of 600–4000 cm⁻¹ (4 cm⁻¹ spectral resolution).

Figure S4. IR spectra of Zr-tcpb-COOH and samples upon treatment with alkali hydroxide solutions. All spectra are referenced to the blank KBr under vacuum. Notation and acronym: v, stretching; δ , deformation; *ip*, in plane; *as*, asymmetric; and *s*, symmetric.

S5. X-Ray Fluorescence (XRF) Spectra

X-ray fluorescence (XRF) spectroscopic measurements were performed on a Horiba X-ray Analytical Micro-scope XGT-1000WR, with operational voltage and current at 50 kV and 60 μ A, respectively. The loading percentage of cations was determined by calculating the relative amounts of Zr⁴⁺ and M⁺/M²⁺. In Zr-tcpb-COO-K sample, the loading percentage is calculated 0.66 K per ligand, while Zr-tcpb-COO-Ca is calculated 0.71 Ca per ligand.

Figure S5. XRF spectra of (a) as-made Zr-tcpb-COOH: Zirconium Mass(%): 99.87 3Sigma(%): 1.61 Intensity(cps/mA): 91658.48; Calcium Mass(%): 0.08 3Sigma(%): 0.99 Intensity(cps/mA): 18.66; Potassium Mass(%): 0.05 3Sigma(%): 1.28 Intensity(cps/mA): 6.51; (b) Zr-tcpb-COO-K: Zirconium Mass(%): 91.29 3Sigma(%): 1.20 Intensity(cps/mA): 133281.25; Calcium Mass(%): 0.00 3Sigma(%): 0.00 Intensity(cps/mA): 0.00 ; Potassium Mass(%): 8.71 3Sigma(%): 1.07 Intensity(cps/mA): 544.94 ; (c) Zr-tcpb-COO-Ca: Zirconium Mass(%): 90.59 3Sigma(%): 0.99 Intensity(cps/mA): 118623.16 ; Calcium Mass(%): 9.41 3Sigma(%): 0.79 Intensity(cps/mA): 1286.52 ; Potassium Mass(%): 0.00 3Sigma(%): 0.00 Intensity(cps/mA): 0.00

S6. X-ray Photoelectron Spectroscopy (XPS) Data

The powdered samples were placed on carbon tape, and spectra X-ray photoelectron spectroscopy (XPS) was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer with a monochromatic Al K α source (1486.6 eV), hemispherical analyzer, and multichannel detector.

Figure S6. XPS spectra of (a) Zr-tcpb-COO-Li, (b) Zr-tcpb-COO-Na, (c) Zr-tcpb-COO-K (K 2p) and (d) Zr-tcpb-COO-Ca (Ca 2p).

S7. Gas Adsorption Measurements

Figure S7. The pore size distribution calculated by Horvath-Kawazoe model using N₂ 77 K isotherms data. Pore size for Zr-tcpb-COOH: (4.49 Å & 18.5 Å), Zr-tcpb-COO-Na: (4.61 Å & 18.2 Å), Zr-tcpb-COO-K: (4.66 Å & 18.18 Å), and Zr-tcpb-COO-Ca: (4.44 Å & 16.73 Å)

Figure S8. Room temperature (298 K) single component CO₂ adsorption isotherms at lowpressure region for the Zr-tcpb-COOM series.

Figure S9. Water adsorption isotherms measured on a gravimetric adsorption analyzer. (a) water uptake in activated Zr-tcpb-COOH at relative humidity (RH) of 12.5%, 25%, and 50% at 303 K; (b) water uptake in activated Zr-tcpb-COO-Ca at relative humidity (RH) of 12.5%, 25%, and 50% at 303 K.

S8. Solid-State NMR Analysis

Figure S10. Solid-State ¹³C CP-MAS NMR of (a) as-made and modified samples and ¹H NMR of activated and as-made sample of (b) Zr-tcpb-COO-Li; (c) Zr-tcpb-COO-Na; (d) Zr-tcpb-COO-K; and (e) Zr-tcpb-COO-Ca.

S9. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) was completed via a TA Instruments Q5000 under constant N₂ flow (20 mL/min). Approximately 10 mg of MOFs samples were placed into a platinum pan, which was then heated from 30-700 °C at a rate of 10 °C/min. The weight loss from MOFs were monitored over the temperature increase.

Figure S11. The thermogravimetric plot of activated Zr-tcpb-COOM series. Samples were activated under a constant N_2 flow for 30 mins at 373 K.