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A. Derivation of the characteristic time parameter, 𝝉 

The Allen-Cahn equation that describes the temporal evolution of the phase parameter, 𝜙, is 

1

𝐿

𝜕𝜙

𝜕𝑡
= 𝐺∇2𝜙 + 𝜔(1 − 𝜙2)(𝜙 − 𝜆𝑐) − 𝐺𝜅|∇𝜙|,                                    (𝐴. 1) 

where 𝐿 is the interface mobility in units of m3 J-1 s-1, 𝐺 is the gradient energy coefficient in 

units of J m-1 and 𝜔 is the double-well barrier height in energy density units (J m-3).1-3 It is 

common practice in the literature3-5 to normalize equation (A.1) with 𝜔, leading to the 

precipitation equation derived by Xu and Meakin (2008):6-8 

𝜏
𝜕𝜙

𝜕𝑡
= 𝜀2∇2𝜙 + (1 − 𝜙2)(𝜙 − 𝜆𝑐) − 𝜀2𝜅|∇𝜙|,                                    (𝐴. 2) 

where 𝜏 = 1/(𝐿𝜔) and 𝜀 = √𝐺/𝜔. 

The double-well barrier height can be related to both the interfacial energy, 𝑆, and the 

interface width parameter, 𝜀:1, 9, 10 

𝑆 = 𝜔𝜀2 ∫ (
𝑑

𝑑𝑟
𝜙0(𝑟))
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3
 𝜔𝜀,                                            (𝐴. 3) 

where 𝜙0(𝑟) is the equilibrium profile of 𝜙 centred at the interface, which takes the form of a 

hyperbolic tangent: 

𝜙0(𝑟) = tanh (
𝑟

√2𝜀
) .                                                                   (𝐴. 4) 

Rearranging eq. (A.3) for 𝜔 leads to eq. (2.4) in the main text: 

𝜏 =
1

𝐿𝜔
=

2√2𝜀

3𝐿𝑆
 . 

 

B. Numerical determination of the stable 𝝓 profile 

Fig B (left) below shows the ratio 𝑊/𝜀 of the fitted and designated width parameter, 𝑊 and 

𝜀, respectively, for an input of 𝜀=500 nm and Δ𝑡 = 5 μs. At the start of the numerical 

determination procedure, the ratio is small due to the ‘sharp’ initial profile, but soon 

converges to 1, indicating 𝑊 = 𝜀 and a stable hyperbolic profile is achieved. Fig B (right) 

shows how the initially ‘sharp’ profile broadens and converges to the stable hyperbolic 

tangent profile for increasing iteration numbers, 𝑁𝐼𝑡. 
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Fig B: On the left the ratio between the fitted and designated width parameter, 𝑊/𝜀, against 

the number of iterations is shown. The set  was 500 nm. On the right the scaled 𝜙′ profile 

for different 𝑁𝐼𝑡 (indicated by the markers in the left figure) is displayed. 

 

C. ‘Sharp’ and diffuse concentration profiles 

Fig C below shows the scaled phase, 𝜙′, and concentration profiles, c, at 𝑡 = 0 s (left) and 

t=0.1 s (right) for 𝜀 = 500 nm and 𝑐∞ = 0.27 (Ω = 1.3). The shape of the 𝜙′ profile does not 

change while the interface position (R at 𝜙′ = 0.5) has moved just 0.2 μm after 0.1 s 

(corresponding to 4000 iterations). In contrast, the ‘sharp’ concentration profile (Fig. C, left) 

changes drastically during the same period and evolves into the diffusion profile shown in 

Fig. C, right.  

   

Fig C: 𝜙′ and 𝑐 profiles at the start of the simulation (left) and after 4000 iterations (right), 

corresponding to 𝑡 = 0.1 s, for 𝜀 = 500 nm and 𝑐∞ = 0.27 (𝛺 = 1.3). 

 

D. Isotropic crystal growth of circular seeds 

Isotropic crystal growth was simulated using Ω = 2.0 (equivalent to 𝑐∞ = 0.82) for up to 2 s 

using circular seeds of different initial radii, 𝑅0, to investigate how the growth speed depends 

on curvature. Similar to the planar growth simulations and simulations with fourfold 

symmetry, the initial phase profile was determined numerically and the concentration profile 

was a `sharp’ profile. The initial radii tested were 30, 40, 50 and 60 μm.  
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Fig D1 below shows an example of the simulated isotropic crystal growth for 𝑅0 = 30 μm 

after 2 s. 

 

Fig D1: Initial (light green) and final shape (red) for isotropic crystal growth, for a circular 

seed with radius 𝑅0 = 30 μm. The contour lines indicate the concentration, 𝑐. 

 

Fig D2 shows Δ𝑅 = 𝑅(𝑡) − 𝑅0 (left) and (𝑡) (right) against time for different values of 𝑅0. 

The radius 𝑅(𝑡) was obtained from the overall area of the circular crystal, i.e., 𝑅(𝑡) =

√𝐴𝑟𝑒𝑎(𝑡)/𝜋. (t) was determined using the phase and concentration profiles extracted 

along different directions of the circular crystal during the simulations.  

   

Fig D2: The difference in the time-dependent radius and the initial radius, 𝑅(𝑡)-𝑅0, (left) and 

the diffusive length  with error bars (right) against time. 

 

 was established by first determining the distance from the origin of the simulation domain 

to the point where 𝑐 = 𝑐∞/2 (via linear interpolation), followed by subtracting the distance of 

the solid-liquid interface (obtained from fitting the 𝜙 profile).  A sketch depicting  is shown 

in Fig D3. 
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For each simulation, the average and standard deviation of  were evaluated from 19 pairs 

of 𝜙 and 𝑐 profiles. The maximum deviations of  for all simulations is not higher than 1.5% 

as displayed by the error bars in Fig D2 (right). This means that the concentration 

distributions around the circular crystals are fairly homogeneous during the simulations and 

the uncertainties in growth speeds evaluated from eq. (3.4) using these mean values of  

will be relatively small. 

 

 

Fig D3: Sketch of the concentration profile indicating 𝑐 = 𝑐∞/2 and the resulting diffusive 

length . 

 

Fig D4 (left) shows the instantaneous growth speeds, 𝑑𝑅/𝑑𝑡, against time obtained from PF 

simulations, 𝑣𝑆𝑖𝑚(𝑡) (solid lines), for different initial radii 𝑅0. Also plotted are the growth 

speeds determined with the analytical expression for 𝑣̆2𝐷(𝑡) (eq. 3.4) from the steady-state 

model. The ratios of the simulated and analytical growth speeds, 𝑣𝑆𝑖𝑚/𝑣2𝐷, are plotted in Fig 

D4 (right).  

   

 

Fig D4: Simulated (solid lines) and analytical instantaneous growth speeds (markers), 𝑣𝑆𝑖𝑚 

and 𝑣2𝐷, (left), and their ratios, 𝑣𝑆𝑖𝑚/𝑣2𝐷, (right) for different values of 𝑅0 against time.  
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After the initial period when the concentration profiles have evolved from the ‘sharp’ profiles, 

the analytical growth speed for R0=60 μm shows the biggest deviation from its simulated 

counterpart, with a maximum percentage difference of ~4% (shown on Fig D4 right). For 

smaller 𝑅0 values, the deviations are lower. 

With deviations of not more than 5%, the simulated growth speeds are in good agreement 

with those obtained from the steady-state approximation. Hence, we conclude that non-

physical contributions that can arise from the curvature of the diffuse 𝜙 interface are not 

significant, and curvature dependent growth is described reasonably well by the PF model. 

 

E. Simulations with circular seeds and fourfold symmetry 

When a spherical/circular seed is used, the circle approximated by the grid is not perfect due 

to the discretization of the simulation grid. Fig E shows the initial shape of a circular seed 

(light green) and its final shape (red) after 7s simulated for anisotropy offset angles of 𝜃0 =

37∘ (left) and 71∘ (right), respectively, using  𝜀 = 700 nm and Ω = 2.4. The grid cell of the 

circular seed that develops into a vertex depends on the initial radius of the (non-ideal) 

circular shape, R0, the width, , and the angle, 𝜃0, leading to some variation in the 

appearance of the overall final crystal. Note that the overall areas of the final crystals are 

essentially identical and both have four-fold rotational symmetry. To ensure the crystals have 

both rotational as well as mirror plane symmetry, i.e., are much less dependent on the 

combination of R0, , and 𝜃0, we used small protrusions on the seeds. The crystal is then 

much less prone to develop four-fold rotational but no mirror symmetry. However, depending 

on the specific conditions used small deviations from mirror symmetry can still develop.     

 

Fig E: Initial (light green) and final (red) crystal shapes after 7s using a circular seed with 

R0= 10 m  =700 nm, Ω = 2.4, for 𝜃0 = 37∘ (left) and 𝜃0 = 71∘ (right). 

 

F. Simulation in a quadrant 

Since both the crystal structure of NaCl and the simulation grid possess fourfold symmetry, 

the simulations were performed in a quadrant of the overall area of interest only4, 7 to reduce 

computational time. For the outer boundaries of the overall area, no-flux Neumann 

conditions were used. During the simulations, symmetry was preserved by treating the 

values along the x-axis as boundary values for the y-axis and vice versa when the spatial 

derivatives at the inner boundaries were evaluated. 
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Fig. F below shows the entire simulation domain for areas of 480 x 480 μm2 (left) and 800 x 

800 μm2 (right), respectively, and two different concentration values together with the initial 

seeds and the resulting final crystals. 

 

  

Fig F: Entire simulation domain and final crystal shapes (red) for a circular seed (light green) 

of radius R0=15 m with protrusions, for (left) Ω = 2.2 (𝑐∞ = 0.97),  = 700 nm, and  𝜃0 = 19∘ 

after 10 s,  and (right) for Ω = 1.3 (𝑐∞ = 0.26),  = 1 m and   𝜃0 = 19∘ after 60 s. 

Simulations were run for finite reservoirs with no-flux Neumann boundary conditions.  

 

G. Concentration after 10 s for  =2.2 

 

 

Fig. G: Concentration distribution for the NaCl solid shown in Fig. F, left. The solid is 

indicated by the white dashed line. There is a depletion of ions in the areas between the 

‘branches’ of the solid. Because of the boundary conditions used (finite reservoir as in 

experiments with microchannels) the growth speed slows down faster than in an ‘infinite 

reservoir’ and even after longer periods the non-compact structure will in general not grow 
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into a fully compact structure. If non-compact growth is followed by compact growth at a later 

stage this will often result in a hybrid shape as has been observed in experiments, e.g.,11-13.  
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