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Fig. S1 Monomer number fraction as a function of radial distance from a reference 

nanoparticle (NP) center-of-mass for grafted chains on that NP (black) and from other 

polymer-grafted nanoparticles (PGNPs) (red) in system with g = 0.96 chain/2, Ng = 

30, and Nm = 40.  

 

 

Fig. S2 Time dependence of the mean square displacements (MSDs) of the grafted NP 

center-of-mass in systems with g = 0.96 chain/2, Ng = 30, and Nm = 40 at two different 

PGNP concentrations.  
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Fig. S3 Decay of the end-to-end vector autocorrelation function ⟨u(t)·u(0)⟩ of polymer 

chains with different lengths Nm as indicated, as a function of time t, in pure polymer 

melts (solid lines) and that in a filled system with Nm = 80, Ng = 30, and g = 0.96 

chains/2.  

 

 

Fig. S4 No aging or change of PGNP mobility was observed for the system with g = 

0.96 chain/2, Ng = 15, and Nm = 80 after 105 of pre-equilibration. The dashed line 

shows the ensemble-averaged diffusivity.  

 



 

S4 

 

 

Fig. S5 Time dependenence of the MSDs of monomers at different positions in grafted 

chains (from the grafting site to the free end) for different systems: (a) at fixed Ng = 10 

and Nm = 40 but at different g, (b) at fixed Nm = 40 and g = 0.96 chains/2 but at 

different Ng, and (c) at fixed Ng = 30 and g = 0.96 chains/2 but at different Nm, as 

indicated. 

 

 

Fig. S6 MSDs of the chain middle monomer (dashed) and center-of-mass (solid) for 

matrix polymers of different chain lengths.  
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Fig. S7 Time dependence of the MSDs 〈∆𝑟2〉 of the center-of-mass of PGNPs with Ng 

= 10 and g = 0.96 chains/2 and bare NPs in melts of Nm = 40. 

 

Scaling relation between 〈𝑹e
𝟐〉/〈𝑹g

𝟐〉 and g of grafted chains: 

For polymer grafted on a sphere of radius R, if the size of a single chain Re exceeds 

R, the situation is similar to that of a star polymer and can be described by the Daoud-

Cotton picture,1 as shown in Fig. S8. That is, the solid angle 4 is divided up into z 

conical sectors, so each chain grafted on the sphere has the same volume in which it 

can spread out. When we fill such a conical volume by blobs that touch each other, we 

clearly must have for the blob radius 𝜉(𝑟) ∝ 𝑟/𝑧1/2. Each blob contains 𝑔(𝑟) ∝ 𝜉(𝑟)2 

monomers. According to the Daoud-Cotton picture, the blobs that correspond to one 

chain just fill one conical sector up to the brush height h. Then one can obtain the scaling 

relation 𝑅𝑒 ∝ ℎ ∝ 𝑧1/4𝑁𝑔
1/2

∝ Σ𝑔
1/4

𝑁𝑔
1/2

 .2 However, the consideration of Rg is more 

subtle since the chains are extended along the radial direction but be compressed along 

the lateral directions. In the radial direction, one still has 𝑅𝑔𝑧 ∝ ℎ ∝ Σ𝑔
1/4

𝑁𝑔
1/2

; while 



 

S6 

 

in the lateral directions, 𝑅𝑔𝑥 = 𝑅𝑔𝑦 ∝ ℎ/Σ𝑔
1/2

∝ Σ𝑔
−1/4

𝑁𝑔
1/2

 . Therefore, 〈𝑅𝑔
2〉 =

〈2𝑅𝑔𝑥
2 + 𝑅𝑔𝑧

2 〉 = (𝑎Σ𝑔
−1/2

+ 𝑏Σ𝑔
1/2

)𝑁𝑔, where a and b are the prefactors. The ratio of 

〈𝑅𝑒
2〉  to 〈𝑅𝑔

2〉  then should be equal to 𝑐 (𝑎Σ𝑔
−1 + 𝑏)⁄  . If we change the form to be 

〈𝑅𝑔
2〉

〈𝑅𝑒
2〉
=

𝑎Σ𝑔
−1+𝑏

𝑐
= 𝐴Σ𝑔

−1 + 𝐵, the value would decrease linearly with Σ𝑔. Therefore, the 

ratio of 〈𝑅𝑒
2〉 to 〈𝑅𝑔

2〉 of the grafted chains shows to be linear (the inset of Fig. 2a). 

 

Fig. S8 Schematic construction of the Daoud-Cotton blob picture for star polymers. At 

a point-like center (or a small sphere), a total of z chains is grafted.2  

 

Estimation of the local polymer monomeric viscosity:  

Starting from equilibriated samples, nonequilibrium molecular dynamics 

simulations were performed to measure the rheological properties of neat polymer melts 

with chain lengths Nm = 10, 20, 40, and 80. SLLOD algorithm coupled with the “box 

deforming” technique was adopted to introduce a shear in x-direction and velocity 

gradient in y-direction.3 The shear rate 𝛾̇ = 𝜕𝑣𝑥 𝜕𝑦⁄  was fixed at 10−5𝜏−1, which is 

low enough to reach the Newtonian plateaus for polymers with Nm < 100 and to obtain 

a zero-shear viscosity.4,5 The viscosity was calculated using 𝜂 = − 〈𝑃𝑥𝑦〉 𝛾̇⁄  , where 



 

S7 

 

〈𝑃𝑥𝑦〉 is the xy component of the pressure tensor. According to the Rouse assumption 

for unentangled polymers, i.e., the zero-shear viscosity is proportional to the chain 

length,  ~ Nm,6 we estimated the local viscosity at segmental scale by 0 = /Nm. The 

results are summarized in Table S1, from which we find the local polymer monomeric 

viscosity is about 0  1.4/3.  

Table S1 Rheological Properties from the Nonequilibrium Molecular Dynamics 

Simulations for Neat Polymer Melts with Different Chain Lengths. 

Nm
 a Re

 b []  c [/3] 0
d[/3] 

10 3.4 13.71 1.37 

20 5.1 27.65 1.38 

40 7.4 57.67 1.44 

80 10.7 95.26 1.19 

aLength of polymer chains. bEnd-to-end distance of polymer chains in equilibrium. 
cBulk polymer melt viscosity at a shear rate of 𝛾̇ = 10−5𝜏−1 . dLocal polymer 

monomeric viscosity estimated using 0 = /Nm.  
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