## **Supporting information**

## Revealing the catalytic role of CO<sub>2</sub> in propane dehydrogenation on

## chromium oxide catalyst

<sup>+</sup> Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China

‡ School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China



Figure S1. Schematic diagram of the relationship between the volume and energy to calculate the lattice constant in the  $Cr_2O_3$  bulk.





Figure S2. The adsorption energy and configurations of (a-e)  $C_3H_8$  and (f)  $C_3H_6$ . The distance between adsorbed molecule and binding site is indicated. Color code: White: H, Gray: C.



Figure S3. The configurations of  $CO_2$  adsorbed on the  $Cr_2O_3$  (a), (b) physisorption; (c) chemisorption.



Figure S4. The reaction pathway of the transition from  $\text{CO}_2$  in physisorption to the chemisorption.



Figure S5. The reaction pathway of the hydrogen molecule formation.



Figure S6. The reaction pathways and important configurations of propane dehydrogenation under  $CO_2$  physisorption and chemisorption respectively.



Figure S7. The reaction pathway of hydrogen abstraction from  $C_3H_8$  and  $C_3H_7$  by adsorbed  $CO_2$ .



Figure S8. The reaction pathway of hydrogen abstraction from  $C_3H_8$  and  $C_3H_7$  by adsorbed oxygen (O\*).



Figure S9. The reaction pathway of removal of surface hydroxyl by (a)  $CO_2$ , (b)  $CO^*$  and (c)  $O^*$  respectively.



Figure S10. (a) The optimized structure of adsorbed HCOO\* (b) The diffusion pathway of hydrogen from O site to Cr site.



Figure S11. The reaction pathway of reverse Boudard reaction.



Figure S12. The reaction pathway of the filling of oxygen vacancy by CO<sub>2</sub>.



Figure S13. The reaction pathway of the water formation from the surface hydroxyls.



Figure S14. The reaction pathway of propene dehydrogenation with/without CO<sub>2</sub>.

Table S1. The calculated adsorption energy at 0 and 800 K of propane and propene.

| Temperature | Propane  | Propene  |
|-------------|----------|----------|
| 0 K         | -0.33 eV | -0.97 eV |
| 800 K       | -0.37 eV | -0.46 eV |

Table S2. The coverage of all adsorptive species on the surface of  $Cr_2O3$  under different partial pressure at 800K. (The \* represents the adsorptive species )

|                                                   |                         | -                       | <b>I I</b> /            |  |
|---------------------------------------------------|-------------------------|-------------------------|-------------------------|--|
| Adsorptive species                                | $C_{3}H_{8}/CO_{2}=1:2$ | $C_{3}H_{8}/CO_{2}=1:1$ | $C_{3}H_{8}/CO_{2}=2:1$ |  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> * | 9.63E-10                | 1.44E-09                | 1.93E-09                |  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> * | 4.32E-09                | 6.48E-09                | 8.64E-09                |  |
| CH <sub>3</sub> CHCH <sub>2</sub> *               | 4.83E-15                | 7.24E-15                | 9.65E-15                |  |
| $CO_2^*$                                          | 5.70E-10                | 4.28E-10                | 2.85E-10                |  |
| CO <sub>2</sub> p*                                | 7.71E-10                | 5.78E-10                | 3.85E-10                |  |
| $H_2O*$                                           | 3.40E-20                | 5.05E-20                | 6.67E-20                |  |
| CO*                                               | 2.94E-07                | 2.21E-07                | 1.47E-07                |  |
| CO*-O                                             | 3.91E-21                | 1.37E-21                | 9.45E-22                |  |

| COH*-O*                             | 1.01E-22 | 3.52E-23 | 2.44E-23 |
|-------------------------------------|----------|----------|----------|
| OH*                                 | 2.07E-10 | 2.51E-10 | 2.88E-10 |
| O*                                  | 1.17E-05 | 1.17E-05 | 1.17E-05 |
| C*                                  | 1.68E-06 | 2.05E-06 | 2.37E-06 |
| CH <sub>3</sub> CHCH <sub>3</sub> * | 2.75E-07 | 3.10E-07 | 2.77E-07 |
| H <sub>2</sub> *                    | 2.37E-09 | 3.56E-09 | 4.75E-09 |
| $H_2Ov^*$                           | 1.10E-19 | 1.64E-19 | 2.19E-19 |
| $CO_2^*$                            | 9.01E-22 | 1.35E-21 | 1.80E-21 |
| COH*                                | 9.52E-11 | 8.75E-11 | 6.73E-11 |
| HCOH*                               | 2.19E-10 | 2.46E-10 | 2.19E-10 |
| COOH*                               | 4.24E-18 | 3.86E-18 | 2.94E-18 |
| COO-vo*                             | 3.12E-13 | 2.34E-13 | 1.56E-13 |