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1. FRACTURE PROCESS

In order to better understand the modulated AGNR fracture process, we include some MD snapshots in Figures S1 and S2.
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Figure S1. 7-AGNR-S(1,3) superlattice at 13% strain when no bond has broken yet. Carbon atoms in black and hydrogen atoms in blue.
The purple region marks the zone that will be involved in the fracture process. Detailed evolution of bond breaking in that purple region is
presented as a function of strain, where purple thick bonds will break in the next snapshot and will be represented by dashed thin purple bonds.

2. ELECTRONIC PROPERTIES

2.1. Penetration length of an edge state

The penetration length ε of an edge (E = 0) state into the AGNR goes as ε ∝ ∆−1, with ∆ the bulk band gap. Below we
will show three ways to undertand it.

2.1.1. The SSH model

The finite SSH model can be described by the Hamiltonian

H = t

N−1∑
j=0

a†jbj + t

N−2∑
j=0

a†j+1bj +H.c., (S1)
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Figure S2. 7-AGNR-I(1,3) superlattice at 6.6% strain when no bond has broken yet. Carbon atoms in black and hydrogen atoms in blue.
The purple region marks the zone that will be involved in the fracture process. Detailed evolution of bond breaking in that purple region is
presented as a function of strain, where purple thick bonds will break in the next snapshot and will be represented by dashed thin purple bonds.

with t, v the intracell and intercell hopping constants. In the non-trivial phase (v > t), the localized state on the left is

Ψ†L = α

N−1∑
j=0

(−1)je−
j
ε a†j , (S2)

with α a normalization constant, and the penetration length ε = ln−1(v/t). From this relation follows e1/ε = v
t = 1 + ∆

2t . If
ε is big enough to truncate a series expansion, we get: 1

ε = ∆
2t . Even though the SSH model is not the closest to an AGNR, it is

fairly simple and illustrate our point that ε ∝ ∆−1.

2.1.2. A simple estimation with graphene

In graphene, the dispersion relation near a the K point is

E = t
√
k2
x + k2

y, (S3)
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Figure S3. Evolution of the band gap as a function of strain. The AGNRs are relaxed (the only constraint is the strain). The 7-AGNR and
9-AGNR belong to different topological phases, hence their band gaps have the opposite behavior with strain.

If it is finite along y (i.e. a generic GNR), ky will be quantized, according to its boundary conditions. We will still use the symbol
k∗ to denote its minimum value. A wave along x can be written (assuming separability) as:

Ψ(x, y) = f(y)e−ikxx, (S4)

with kx = t−1
√
E2 − t2k2

∗. In particular, if we have a solution with E = 0, kx becomes imaginary, i.e. a localized wave:

Ψ(x, y) = f(y)e−xε, (S5)

where ε−1 = ikx = |k∗|. Since the band gap of this generic GNR is ∆ = 2t|k∗|, it follows the relation ε = 2t
∆ .

2.1.3. Penetration length of a zig-zag GNR

An exact expression for the edges states in zigzag terminated graphene (i.e. periodic along the y-axis) was found by Fujita et
al.[S1]:

ψm ∝ cos−2m

(
k

2

)
, (S6)

where m is the index of the site since the border, and k is wavevector from the periodic direction. The penetration length, ε is:

ε−1 = ln

[
cos2

(
k

2

)]
. (S7)

If we are interested in edge states with E ≈ 0, the values of k of interest are close to π, or k = π − δy . After some algebra, we
find

1

ε
≈ δy (S8)
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Figure S4. Localization of the interface wave function as a function of the applied strain. There is a clear correspondence between the local
band gap of the N-AGNR and the localization of the electronic state along each segment: the smaller the band gap the larger the localization.
To avoid a non-uniform strain along the sample only the ground-state structure was relaxed. The isovalue is 0.005, and the shaded regions are
just a guide to the eye.

Our case of interest is the penetration of the states from zigzag edges in an AGNR, not graphene. This imposes a quantization
of the values of k allowed, and also gives rise to a band gap, then 1

ε ≈
∆
2t .

[S1] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar localized state at zigzag graphite edge, Journal of the Physical Society
of Japan 65, 1920 (1996).
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Figure S5. Similar to Fig. S3, but the evolution of the band gap as a function of the strain is estimated from GW calculations. See the main
text for details.
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