Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

1	Supporting Information (SI)
2	For
3	
4	Molecular mechanisms of humic acid-enhanced formation of the
5	ordered secondary structure of a conserved catalytic domain in
6	phytase
7	
8	Xinfei Ge, ^a Wenjun Zhang, ^{*,a} Christine V. Putnis, ^{b,c} and Lijun Wang, ^{*,a}
9	
10	^a College of Resources and Environment, Huazhong Agricultural University, Wuhan
11	430070, China
12	^b Institut für Mineralogie, University of Münster, 48149 Münster, Germany
13	School of Molecular and Life Science, Curtin University, Perth 6845, Australia
14	
15	
16	Number of tables: 3
17	
17	Number of figures: 9
18	Number of pages: 9
19	
20	
21	
22	

25	peptide secondary	structures	with respec	ctive to IR	and Raman	spectra.1-4
----	-------------------	------------	-------------	-------------	-----------	-------------

	Structures	Amide I (cm ⁻¹)	Amide III (cm ⁻¹)	
	α-helix	1648-1657	1260-1310	
	Radom coil	1642-1660	1230-1260	
	β-sheet	1623-1641	1220-1265	
26 —	·			

23

28 Table S2. ΔG_b and corresponding fitting parameters of -COOH, NH₃⁺ and CH₃ from

29 DFS data (x_t, distance to transition between bound and unbound states; $f_{eq},$

30 equilibrium force). All values are represented as mean \pm standard deviation.

0.1.4	0 0	Functional		Fitting parameters		-ΔG _b
Solutions	Surfaces	groups	k(N/m)	x_t (Å)	f _{eq} (pN)	(KJ/mol)
		СООН	0.1012	0.82 ± 0.066	230.53±14.20	17.42±1.98
	mica	$\mathrm{NH_{3}^{+}}$	0.1078	$0.90{\pm}0.052$	165.19±12.04	14.56±1.65
without		CH ₃	0.0965	0.61 ± 0.042	82.68 ± 7.49	6.45 ± 0.83
phytate		COOH	0.0921	$0.90{\pm}0.088$	$189.04{\pm}12.46$	16.17±1.75
	HA	$\mathrm{NH_{3}^{+}}$	0.1105	$0.91{\pm}0.034$	$251.98{\pm}15.89$	21.76±2.62
		CH_3	0.0791	0.64 ± 0.055	90.45 ± 7.84	6.55 ± 0.96
		COOH	0.0872	0.74 ± 0.048	239.20±19.14	16.78±1.76
	mica	$\mathrm{NH_{3}^{+}}$	0.0932	0.72 ± 0.052	157.61 ± 8.90	12.13±1.53
with		CH ₃	0.0784	$0.75 {\pm} 0.053$	84.12±6.04	7.32 ± 0.78
phytate		COOH	0.0694	0.73 ± 0.064	193.87±13.19	14.45 ± 1.86
	HA	$\mathrm{NH_{3}^{+}}$	0.0943	$0.85 {\pm} 0.047$	238.84±16.24	19.10±1.54
		CH ₃	0.0847	0.62 ± 0.067	87.28 ± 7.94	6.93 ± 0.82

32 **Table S3**. ΔG_b and corresponding fitting parameters of ACD, ACD-1 and ACD-2 33 from DFS data (x_t, distance to transition between bound and unbound states; f_{eq} ,

Colutions	Courterer	Active	k (N/m)	Fitting pa	- ΔG_b	
Solutions	Surfaces	domains		x_t (Å)	$f_{\text{eq}}\left(pN\right)$	(KJ/mol)
		ACD	0.0915	0.54±0.044	95.52±6.07	6.14±0.55
without	mica	ACD-1	0.0786	0.60 ± 0.045	86.17±7.28	6.13 ± 0.88
nhytate		ACD-2	0.0623	$0.63 {\pm} 0.032$	90.14±6.47	6.23±0.67
phytate		ACD	0.0831	0.77 ± 0.086	203.59±14.3	15.71 ± 1.2
	HA	ACD-1	0.0905	$0.59{\pm}0.038$	91.49 ± 8.49	6.38 ± 0.51
		ACD-2	0.0718	0.64 ± 0.057	$204.78{\pm}14.2$	14.8 ± 1.57
		ACD	0.0859	0.66 ± 0.047	167.31 ± 9.65	11.64 ± 0.63
with	mica	ACD-1	0.0672	0.71 ± 0.052	87.04 ± 9.12	7.20 ± 0.60
witti		ACD-2	0.0826	$0.53 {\pm} 0.062$	87.54±6.89	6.37 ± 0.72
pirytate		ACD	0.0799	0.88 ± 0.054	$231.26{\pm}13.14$	19.29 ± 1.94
	HA	ACD-1	0.1043	$0.59{\pm}0.057$	$94.74{\pm}8.16$	6.58 ± 0.96
		ACD-2	0.0619	$0.74{\pm}0.057$	96.45±12.2	6.7 ± 0.88

34 equilibrium force). All values are represented as mean \pm standard deviation.

35

36

37 Full-length phytase (FLP):

38	MSDMKSGNIS	RHGVRAPPFL	SLLIPLTPQS	AFAQSEPELK
39	LESVVIVSMK	AILITKATQL	MQDVTPDAWP	TWPVKLGWLT
40	PRGGELIAYL	GHYQRQRLVA	DGLLTKKGCP	QPGQVAIIAD
41	VDERTRKTGE	AFAAGLAPDC	AISVHTQADT	SSPDPLFNPL
42	KTGVCQLDNA	NVTDAILSRA	GGSIADFTGH	RQTAFRELER
43	VLNFPQSNLC	LNREKQDESC	SLTQALPSEL	KVSADNVSLT
44	GAVSLASMLT	EIFLLQHDQG	MPEPGGEGSP	IHTSGTPC

45 Fig. S1. Amino acid sequences of FLP (Origin: EC 3.1.3.26, *Escherichia coli*)
46 containing N-terminal (RHGVRAP, ACD-1) and C-terminal (HD) active domains.

48 Fig. S2. Raman characteristic vibrations of mica and HA selected to conduct Raman

52 Fig. S3. Secondary structures of ACD in the region of (A) Amide I and (B) Amide III
53 before (black lines) and after (red lines) treatment with HA.

Fig. S4. Representative F-D curves between the Au-coated bare tip with (A) mica and (B) HA surface. Representative F-D curves between the LC-SPDP-functionalized tip with (C) mica and (D) HA surface. These typical F-D curves as key controls collectively excluded the interference from the interaction between Au-coated or LC-SPDP-functionalized tips and the two surfaces compared to functionalized tips of ACD(-1/2) as well as -CH₃-, -COOH-, -NH₃-terminal organic molecules.

62 Fig. S5. (A) Analyses of ΔL_c of ACD and ACD-2 separated from HA deposited on 63 mica surface. Different uppercase letters indicate significant difference at P < 0.01, 64 which was analyzed by SPSS software. (B) A plot of mean unfolding force of the first 65 force-peak occurred in double-force curves versus loading rates, determining f_{eq} and 66 ΔG_b for allowing to break H-bonding as ACD-2 is retracted from HA. The derived f_{eq} 67 and ΔG_b are presented as mean \pm standard deviations (n = 3).

70 Fig. S6. (A) Representative F-D curve between ACD-1 and mica fitted by the WLC

S6

71 model. The contour length (L_c) obtained from F-D curves through WLC fitting during 72 detaching ACD-1 from (B, D) mica and (C, E) mica with adsorbed HA in solutions 73 (pH 5 and *IS* = 10 mM NaCl) in the absence and presence of 20 μ M phytate. (F) 74 Analysis of L_c of ACD-1 separated from mica or mica with adsorbed HA. Different 75 uppercase letters indicate significant difference at *P* < 0.01, which was analyzed by 76 SPSS software.

Fig. S7. Chemical structures of (A) ACD, (B) ACD-1 and (C) ACD-2 showing
representative chemistries containing CH₃, NH₃⁺ and COOH.

82 **Fig. S8**. Plots of mean rupture forces versus loading rates of COOH-, NH_3^+ - or CH_3^- 83 terminal model organic molecule at the mica/HA interface in the (A, B) absence and 84 (C, D) presence of 20 μ M phytate in solutions (pH 5 and *IS* 10 mM NaCl).

86

89 Fig. S9. Plots of mean rupture forces versus loading rates of ACD-1 at the mica/HA 90 interface in the (A) absence and (B) presence of 20 μ M phytate in solutions (pH 5 and 91 *IS* 10 mM).

92 SI References

- A. Barth and C. Zscherp, What Vibrations Tell Us about Proteins. *Quar. Rev. Biophys.*, 2002, **35**, 369-430.
- 95 2 L. Tamm and S. A. Tatulian, Infrared spectroscopy of proteins and peptides in
- 96 lipid bilayers. *Quar. Rev. Biophys.*, 1997, **30**, 365-429.
- 97 3 G. Vedantham, H. G. Sparks, S. U. Sane, S. Tzannis and T. M. Przybycien, A
- 98 holistic approach for protein secondary structure estimation from infrared spectra
- 99 in H₂O solutions. *Anal. Biochem.*, 2000, **285**, 33-49.
- 100 4 E. A. Cooper and K. Knutson, Fourier transform infrared spectroscopy
 101 investigations of protein structure. *Pharm. Biotechnol.*, 1995, 7, 101-143.