Supplemental Material of Predicted Structures and Superconductivity of $LiYH_n$ (n=5-10) under High Pressures

Huan Li^{1,2}, Tao Gao^{1,*}, Shiyin Ma¹, Xiaoqiu Ye^{2,*}

¹Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

²Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou,

621908, China

Fig. S1. Ground-state static enthalpy curves per formula units as a function of pressure for $LiYH_n$ (n=5-10) after the correction of zero point energy (ZPE) was considered.

Fig. S2. Enthalpy curves of various structures of $LiYH_n$ (n=5-10) relative to

LiH+YH₃+nH₂ (n=0.5-3) as functions of pressure, ZPEs included. We have considered the most stable structures of $LiYH_n$ (n=5-10) in their respective pressure ranged, as shown in Fig. S1.

Fig. S3. Phonon dispersion curves of stable or metastable phases of $LiYH_n$ (n=5-10).

Fig. S4. Predicted ground-state static structures of LiYH₅ and LiYH₇ ((a) Cmce LiYH₅ at 150 GPa, (b) I4/mmm LiYH₅ at 200 GPa, (c) C2/c LiYH₇ at 150 GPa and (d) P-1 LiYH₇ at 200 GPa). The green, purple and pink spheres represent Li, Y and H atoms, respectively. Lines are drawn for Li-H, Y-H separations shorter than 1.70 Å and 2.2 Å.

Fig. S5. Total DOS, local DOS and partial DOS of LiYH_n (n=5-10). Energy is shifted so that the Fermi level E_F equals zero.

Fig. S6. Three-dimensional electron localization functions (ELF) with an isosurface value 0f 0.5 (a) $P2_1/m$ LiYH₆ at 150 GPa, (b) Pnma LiYH₆ at 250 GPa, (c) P-1 LiYH₈ at 200 GPa, (d) C2/c LiYH₈ at 300 GPa, and (e) R-3m LiYH₁₀ at 200 GPa. The green, purple and pink spheres represent Li, Y and H atoms, respectively.

Fig. S7. Projected phonon density of states (PHDOS), Eliashberg spectral function $\alpha^2 F(\omega)$, and EPC coupling $\lambda(\omega)$ of LiYH_n (n=5-10).

Table S1. Zero point energies (ZPE) of $LiYH_n$ (n=5-10), LiH, YH_3 and H_2 at different pressures.

System	Space Group	Pressure (GPa)	ZPE (eV/atom)
LiYH5	C2/m	10	0.300
		20	0.322
		50	0.376
		100	0.437
		150	0.479
	_	9	

		200	0.513
	Cmce	10	0.302
		20	0.323
		50	0.378
		100	0.439
		130	0.466
		150	0.482
		180	0.504
		200	0.516
		250	0.543
	I4/mmm	130	0.417
		150	0.436
		180	0.460
		200	0.476
		250	0.504
		300	0.532
LiYH ₆	$P2_1/m$	100	0.433
		150	0.471
		180	0.492
		200	0.503
		220	0.515
		240	0.527
		250	0.533
		260	0.538
	Pnma	150	0.456
		180	0.477
		200	0.490
		220	0.503
		240	0.515
		250	0.520
		260	0.526
		300	0.547
LiYH ₇	P-1	100	0.430
		130	0.456
		150	0.473
		170	0.487
		200	0.507
		220	0.520
		250	0.535
		300	0.560
	C2/c	100	0.438
		10	
		10	

		130	0.457
		150	0.470
		170	0.483
		200	0.501
		220	0.511
LiYH ₈	P-1	20	0.367
		50	0.409
		60	0.419
		70	0.430
		100	0.452
		120	0.465
		130	0.472
		150	0.482
		180	0.497
		200	0.505
		250	0.536
		300	0.561
	C2/c	20	0.303
		50	0.352
		70	0.376
		100	0.403
		130	0.431
		150	0.447
		180	0.473
		200	0.489
		250	0.525
		300	0.553
LiYH ₉	Immm	100	0.463
		150	0.498
		180	0.515
		200	0.525
	P-1	100	0.427
		150	0.440
		180	0.466
		200	0.480
LiYH ₁₀	R-3m	1 atm	0.308
		30	0.361
		40	0.374
		50	0.387
		80	0.424
		100	0.445

		130	0.471	
		150	0.485	
		180	0.519	
		200	0.534	
		230	0.550	
		250	0.562	
		270	0.573	
		300	0.589	
YH ₃	C2/m	50	0.365	
		100	0.426	
		150	0.470	
	P6 ₃ /mmc	200	0.494	
	Cmcm	250	0.508	
		300	0.533	
H ₂	P6 ₃ /m	50	0.478	
		100	0.521	
	C2/c	150	0.549	
		200	0.574	
	Cmca	250	0.590	
		300	0.607	
LiH	Fm-3m	50	0.329	
		100	0.389	
		150	0.431	
		200	0.464	
	Pm-3m	250	0.338	
		300	0.363	

Table S2. Structural parameters of $LiYH_n$ (n=5-10) system under different pressures.

System	Space	Structural	Atom	Atomic Coordinate (Å))
	Group	Parameter		Х	Y	Ζ
		(A,°)				
LiYH ₅	Cmce	a=4.19080	Li (8f)	-0.50000	0.16164	0.45769
(150		b=4.08830	Y (8f)	-0.00000	0.90224	-0.34035
GPa)		c=12.81360	H (16g)	-0.29716	0.13897	-0.43581
		α=β=γ=90	H (8f)	-0.50000	0.90137	-0.33341
			H (8d)	-0.09844	-0.00000	-0.50000
			H (8e)	-0.25000	0.34237	0.25000
LiYH ₆	$P2_1/m$	a=2.84460	Li (2e)	0.61889	0.75000	0.59365
(150		b=3.02270	Y (2e)	0.81013	0.75000	0.16811

GPa)		c=6.87410	H (4f)	0.07316	0.03695	0.56013
		α=γ=90	H (2e)	0.15725	0.75000	0.67473
		β=98.6134	H (2e)	0.69457	0.75000	0.83977
			H (2e)	0.39096	0.75000	0.36094
			H (2e)	0.24830	0.75000	0.99309
LiYH ₆	Pnma	a=6.24220	Li (4c)	-0.00078	0.75000	-0.30343
(250		b=2.52950	Y (4c)	-0.26919	0.75000	-0.48398
GPa)		c=6.11210	H (4c)	-0.01613	0.75000	-0.83698
		α=β=γ=90	H (4c)	-0.13997	0.75000	-0.76054
			H (4c)	-0.96775	0.75000	-0.54568
			H (4c)	-0.73378	0.25000	-0.81280
			H (4c)	-0.95056	0.25000	-0.92156
			H (4c)	-0.64573	0.25000	-0.23072
LiYH ₇	C2/c	a=3.13050	Li (4e)	0.00000	0.16047	0.75000
(150		b=5.64840	Y (4b)	0.50000	-0.00000	1.00000
GPa)		c=7.01850	H (8f)	0.92538	0.15573	1.35788
		α=γ=90	H (8f)	0.02232	0.17553	0.54550
		β=96.3883	H (8f)	0.26111	0.08547	1.23096
			H (4e)	0.00000	0.35106	1.25000
LiYH ₈	P-1	a=3.43510	Li (2i)	0.55638	0.25431	0.65401
(200		b=3.48600	Y (2i)	-0.15579	0.27334	0.20858
GPa)		c=5.12940	H (2i)	-0.05933	0.18543	0.87132
		α= 86.103	H (2i)	0.22470	0.98966	0.45352
		β=107.8251	H (2i)	0.04327	0.23302	0.60927
		γ=97.4157	H (2i)	-0.66365	0.46907	0.12738
			H (2i)	-0.24962	0.51364	0.48130
			H (2i)	-0.60139	0.18431	0.36278
			H (2i)	-0.38445	0.75800	0.10672
			H (2i)	-0.73604	0.00959	0.11349
LiYH ₈	C2/c	a=3.31080	Li (4e)	0.00000	0.92155	0.75000
(300		b=9.43890	Y (4e)	0.50000	0.14527	0.75000
GPa)		c=3.27950	H (8f)	0.25048	0.01785	1.48875
		α=γ=90	H (8f)	0.77743	0.69052	1.28818
		β=81.1170	H (8f)	0.53711	0.69092	0.52864
			H (4e)	0.50000	0.05344	1.25000
			H (4e)	0.00000	0.93250	1.25000
LiYH ₉	Immm	a=15.31190	Li (4f)	0.41737	-0.00000	0.50000
(150		b=3.06180	Y (4f)	0.32091	0.50000	0.00000
GPa)		c=2.99300	H (4f)	0.31311	0.00000	0.50000
		α=β=γ=90	H (81)	-0.00000	0.76568	0.12912
		_	H (8m)	0.05533	-0.00000	0.36069

			H (4e)	0.25185	0.00000	0.00000
			H (4e)	0.47467	0.00000	0.00000
			H (4e)	0.10301	0.00000	0.00000
			H (4e)	0.10712	0.50000	0.50000
LiYH ₉	P-1	a=3.41990	Li (2i)	0.75719	-0.93456	-0.86880
(250		b=3.43010	Y (2i)	0.75291	-0.64232	-0.28451
GPa)		c=5.10130	H (2i)	0.29874	-0.92085	-0.84970
		α=109.3956	H (2i)	0.00887	-0.81917	-0.63560
		β=89.4492	H (2i)	0.49863	-1.18652	-0.36896
		γ=90.3359	H (2i)	0.25570	-0.43554	-0.36153
			H (2i)	0.74709	-1.07013	-0.63479
			H (2i)	0.49934	-0.25909	-0.00318
			H (2i)	0.74559	-1.25270	-0.50539
			H (2i)	0.00021	-1.26344	-0.99904
			H (2i)	0.75160	-1.41828	-0.89341
LiYH ₁₀	R-3m	a=b=2.99220	Li (3b)	0.00000	0.00000	0.50000
(200		c=12.72110	Y (3a)	0.00000	0.00000	0.00000
GPa)		α=β=90	H (6c)	0.00000	0.00000	0.25791
		γ=120	H (6c)	0.00000	-0.00000	0.61411
			H (18h)	0.82935	0.65870	0.199931

Table S3. The average number of remaining valence electrons per Li, Y and H atom in LiYH_n (n=5-10) was obtained by Bader charge analysis under selective pressure. $\sigma(e)$ represents the number of valence electrons gained or lost (positive values indicate electrons lost, negative values indicate electrons gained).

System	Pressure	Atomic	Average number of	Average number of
	(GPa)	Species	remaining valence	electrons gained or
			electrons (e)	lost $\sigma(e)$
D2 /m		Li	0.27445	0.72555
P2 ₁ /m LiYH ₆	150	Y	9.59500	1.40500
		Н	1.35510	-0.35510
Domo		Li	0.30666	0.69334
Phma LiYH ₆	250	Y	9.80700	1.19300
		Н	1.31439	-0.31439
P-1	200	Li	0.32218	0.67782
$LiYH_8$	200	Y	9.69874	1.30126

		H	1.24738	-0.24738
C 2/		Li	0.35377	0.64624
	300	Y	9.83081	1.16919
		Η	1.18728	-0.18728
Immm LiYH9		Li	0.27313	0.72687
	150	Y	9.56170	1.43831
		Η	1.24057	-0.24057
P-1 LiYH9		Li	0.34823	0.65177
	250	Y	9.62279	1.37721
		Η	1.22544	-0.22544
R-3m LiYH ₁₀		Li	0.29473	0.70527
	200	Y	9.67335	1.32665
		Н	1.20319	-0.20319