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Determination of Young’s modulus and hardness from indentation load-depth curves 

Based on the indentation load-depth curves extracted from a depth-sensing nanoindentation 

system, the reduced elastic modulus Er of the tested system can be determined from
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where  is a constant depending on the geometry of indenter ( = 1.034 for the Berkovich 

indenter
S2

), S = dP/dh is the slope of the load-displacement (P-h) curve at the beginning of the 

unloading stage, and A is the projected area of the contact with hc being the contact depth. 

Specifically, the contact depth hc can be determined from the following equation:
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where Pmax is the maximum load and  is another constant depending on the geometry of indenter 

( = 0.75 for the Berkovich indenter
S3

). 

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022

mailto:jinzhang@hit.edu.cn


2 

Meanwhile, the reduced contact modulus in Equation S1 has the following expression:
S2
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Here E and  are, respectively, the Young’s modulus and Poisson’s ratio of the indented 2D 

material/SiO2 system; and Ei and i are the Young’s modulus and Poisson’s ratio of the indenter, 

respectively. 

The hardness H usually can be determined from: 
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After eliminating the contact area based on Equation S1, the composite hardness of the 2D 

material/SiO2 system can be further written as 
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From Equation S3 we can see that the Young’s modulus estimated from the nanoindentation 

experiments is dependent on the Poisson’s ratio of the tested systems, though the effect of 

Poisson’s ratio is proven to be trivial.
S4,S5

 As for the composite MoS2/SiO2 or graphene/SiO2 

system considered here, it is very difficult to determine the exact value of its overall Poisson’s 

ratio, which could range between the values of MoS2 (or graphene) and SiO2. Under this 

circumstance, the value range of the Young’s modulus of the composite 2D material/SiO2 

systems was estimated here by using the largest and the smallest Poisson’s ratios between MoS2 

(or graphene) and SiO2. It is worth noting that the Poisson’s ratios of multilayer MoS2 and 

graphene reported in existing theoretical studies have a wide value range,
S6,S7

 partially due to 

their different in-plane and out-of-plane elastic properties. Specifically, the Poisson’s ratio of 

graphene is reported to range between 0.12 and 0.19, while the Poisson’s ratio of MoS2 is 
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between 0.25 and 0.29. Meanwhile, the Poisson’s ratio of the SiO2 substrate is 0.17.
S8

 Thus, the 

upper limit value of the Young’s modulus of the MoS2/SiO2 system can be obtained by assuming 

the Poisson’s ratio as 0.17 (the value of SiO2), while the lower limit value can be obtained by 

assuming the Poisson’s ratio as 0.29 (the maximum value of MoS2). Similarly, the upper limit 

value of the Young’s modulus of the graphene/SiO2 system can be obtained by assuming the 

Poisson’s ratio as 0.12 (the minimum value of graphene), while the lower limit value can be 

obtained by assuming the Poisson’s ratio as 0.19 (the maximum value of graphene). As for both 

MoS2/SiO2 and graphene/SiO2 systems, the lower and upper limit values of the Young’s modulus 

are found to be extremely close to each other (see Figure S2), which proves the fact that the 

Poisson’s ratio indeed has a minor effect on the equivalent Young’s modulus of the present 2D 

material/SiO2 systems estimated from the nanoindentation experiments. 

 

Parameters in the LJ potential 

The expression of LJ 12-6 potential is 
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where  is the potential energy between a pair of atoms, r is the separation distance between the 

pair of atoms,  is the potential well depth, and  is the vdW separation distance. Values of  and 

 for some atoms considered in MD simulations are listed in Table S1.
S9

 It is noted that the LJ 

parameters for some other atom types can be further calculated by using the Lorentz-Berthelot 

mixing rule. 
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Table S1. LJ potential parameters utilized in the present MD simulations 
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Supplementary Figures 
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Figure S1. Indentation load-depth curve of the pure SiO2 substrate. Here, no pop-in events are 

observed in the loading process. 
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Figure S2. Young’s modulus-indentation depth curves of the MoS2/SiO2 system (top panel) and 

the graphene/SiO2 system (bottom panel) with different MoS2 and graphene thicknesses (~20, 

~40, and ~100 nm). 
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Figure S3. Hardness-indentation depth curves of the MoS2/SiO2 system (top panel) and the 

graphene/SiO2 system (bottom panel) with different MoS2 and graphene thicknesses (~20, ~40, 

and ~100 nm). 
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Figure S4. (a) Young’s modulus-indentation depth curve and (b) hardness-indentation depth 

curve of pure SiO2 substrate. 
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Figure S5. Stacking patterns of multilayer (a) MoS2 and (b) graphene. Here, cyan, yellow and 

gray balls respresent Mo, S and C atoms, respectively. 
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Figure S6. (a) Schematic of the 2D material/substrate model considered in FE simulations of the 

nanoindentation. (b) FE model of the 2D material/substrate system under the indentation load, in 

which both 2D material/substrate sample and indenter tip are simplified as the axial symmetric 

models. 
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