Supporting Information

Delamination of $\mathrm{MoS}_{2} / \mathrm{SiO}_{2}$ interfaces under nanoindentation

Jin Ke \dagger, Penghua Ying \dagger, Yao Du, Bo Zou, Huarui Sun, Jin Zhang*
School of Science, Harbin Institute of Technology, Shenzhen 518055, China
\dagger These authors contributed equally.
*Corresponding author. E-mail address: jinzhang @hit.edu.cn.

Determination of Young's modulus and hardness from indentation load-depth curves

Based on the indentation load-depth curves extracted from a depth-sensing nanoindentation system, the reduced elastic modulus E_{r} of the tested system can be determined from ${ }^{\text {S1 }}$

$$
\begin{equation*}
E_{r}=\frac{\sqrt{\pi}}{2 \beta} S \frac{1}{\sqrt{A\left(h_{c}\right)}} \tag{S1}
\end{equation*}
$$

where β is a constant depending on the geometry of indenter ($\beta=1.034$ for the Berkovich indenter ${ }^{\mathrm{S} 2}$), $S=\mathrm{d} P / \mathrm{d} h$ is the slope of the load-displacement $(P-h)$ curve at the beginning of the unloading stage, and A is the projected area of the contact with h_{c} being the contact depth. Specifically, the contact depth h_{c} can be determined from the following equation: ${ }^{\text {S3 }}$

$$
\begin{equation*}
h_{c}=h-\varepsilon \frac{P_{\max }}{S}, \tag{S2}
\end{equation*}
$$

where $P_{\max }$ is the maximum load and ε is another constant depending on the geometry of indenter $\left(\varepsilon=0.75\right.$ for the Berkovich indenter $\left.{ }^{53}\right)$.

Meanwhile, the reduced contact modulus in Equation S1 has the following expression: ${ }^{\text {S2 }}$

$$
\begin{equation*}
\frac{1}{E_{r}}=\frac{\left(1-v^{2}\right)}{E}+\frac{\left(1-v_{i}^{2}\right)}{E_{i}} \tag{S3}
\end{equation*}
$$

Here E and v are, respectively, the Young's modulus and Poisson's ratio of the indented 2D material/ SiO_{2} system; and E_{i} and v_{i} are the Young's modulus and Poisson's ratio of the indenter, respectively.

The hardness H usually can be determined from:

$$
\begin{equation*}
H=\frac{P}{A} . \tag{S4}
\end{equation*}
$$

After eliminating the contact area based on Equation S1, the composite hardness of the 2D material $/ \mathrm{SiO}_{2}$ system can be further written as

$$
\begin{equation*}
H=\frac{4 \beta^{2}}{\pi} \frac{P}{S^{2}} E_{r}^{2} . \tag{S5}
\end{equation*}
$$

From Equation S3 we can see that the Young's modulus estimated from the nanoindentation experiments is dependent on the Poisson's ratio of the tested systems, though the effect of Poisson's ratio is proven to be trivial. ${ }^{\mathrm{S} 4, \mathrm{~S} 5}$ As for the composite $\mathrm{MoS}_{2} / \mathrm{SiO}_{2}$ or graphene/ SiO_{2} system considered here, it is very difficult to determine the exact value of its overall Poisson's ratio, which could range between the values of MoS_{2} (or graphene) and SiO_{2}. Under this circumstance, the value range of the Young's modulus of the composite 2 D material/ SiO_{2} systems was estimated here by using the largest and the smallest Poisson's ratios between MoS_{2} (or graphene) and SiO_{2}. It is worth noting that the Poisson's ratios of multilayer MoS_{2} and graphene reported in existing theoretical studies have a wide value range, ${ }^{\mathrm{S} 6, \mathrm{S7}}$ partially due to their different in-plane and out-of-plane elastic properties. Specifically, the Poisson's ratio of graphene is reported to range between 0.12 and 0.19 , while the Poisson's ratio of MoS_{2} is
between 0.25 and 0.29 . Meanwhile, the Poisson's ratio of the SiO_{2} substrate is $0.17 .{ }^{\mathrm{S} 8}$ Thus, the upper limit value of the Young's modulus of the $\mathrm{MoS}_{2} / \mathrm{SiO}_{2}$ system can be obtained by assuming the Poisson's ratio as 0.17 (the value of SiO_{2}), while the lower limit value can be obtained by assuming the Poisson's ratio as 0.29 (the maximum value of MoS_{2}). Similarly, the upper limit value of the Young's modulus of the graphene/ SiO_{2} system can be obtained by assuming the Poisson's ratio as 0.12 (the minimum value of graphene), while the lower limit value can be obtained by assuming the Poisson's ratio as 0.19 (the maximum value of graphene). As for both $\mathrm{MoS}_{2} / \mathrm{SiO}_{2}$ and graphene/ SiO_{2} systems, the lower and upper limit values of the Young's modulus are found to be extremely close to each other (see Figure S2), which proves the fact that the Poisson's ratio indeed has a minor effect on the equivalent Young's modulus of the present 2D material $/ \mathrm{SiO}_{2}$ systems estimated from the nanoindentation experiments.

Parameters in the LJ potential

The expression of LJ 12-6 potential is

$$
\begin{equation*}
\phi(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \tag{S6}
\end{equation*}
$$

where ϕ is the potential energy between a pair of atoms, r is the separation distance between the pair of atoms, ε is the potential well depth, and σ is the vdW separation distance. Values of ε and σ for some atoms considered in MD simulations are listed in Table $\mathrm{S} 1 .{ }^{\mathrm{S} 9}$ It is noted that the LJ parameters for some other atom types can be further calculated by using the Lorentz-Berthelot mixing rule.

Table S1. LJ potential parameters utilized in the present MD simulations

Atom type	$\sigma(\AA)$	$\varepsilon(\mathrm{eV})$
C	3.4309	0.0045532
O	3.1181	0.0026018
Si	3.8264	0.017432
Mo	2.719	0.0024284
S	3.5948	0.011882

References

(S1) Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965, 3, 47-57.
(S2) King, R. B. Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 1987, 23, 1657-1664.
(S3) Oliver, W. C.; Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3-20.
(S4) Mesarovic, S. D.; Fleck, N. A. Spherical indentation of elastic-plastic solids. Proc. R. Soc. Lond. 1999, 455, 2707-2728.
(S5) Chen, S. H.; Liu, L.; Wang, T. Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol. 2005, 191, 25-32.
(S6) Woo, S.; Park, H. C.; Son, Y.-W. Poisson's ratio in layered two-dimensional crystals. Phys. Rev. B. 2016, 93, 075420.
(S7) Politano, A.; Chiarello, G. Probing the Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study. Nano Res. 2015, 8, 1847-1856.
(S8) Kim, M. T. Influence of substrates on the elastic reaction of films for the microindentation. Thin Solid Films 1999, 283, 12-16.
(S9) Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035.

Supplementary Figures

Figure S1. Indentation load-depth curve of the pure SiO_{2} substrate. Here, no pop-in events are observed in the loading process.

Figure S2. Young's modulus-indentation depth curves of the $\mathrm{MoS}_{2} / \mathrm{SiO}_{2}$ system (top panel) and the graphene $/ \mathrm{SiO}_{2}$ system (bottom panel) with different MoS_{2} and graphene thicknesses (~ 20, ~ 40, and $\sim 100 \mathrm{~nm}$).

Figure S3. Hardness-indentation depth curves of the $\mathrm{MoS}_{2} / \mathrm{SiO}_{2}$ system (top panel) and the graphene $/ \mathrm{SiO}_{2}$ system (bottom panel) with different MoS_{2} and graphene thicknesses ($\sim 20, \sim 40$, and $\sim 100 \mathrm{~nm}$).

Figure S4. (a) Young's modulus-indentation depth curve and (b) hardness-indentation depth curve of pure SiO_{2} substrate.

Figure S5. Stacking patterns of multilayer (a) MoS_{2} and (b) graphene. Here, cyan, yellow and gray balls respresent Mo, S and C atoms, respectively.

Figure S6. (a) Schematic of the 2D material/substrate model considered in FE simulations of the nanoindentation. (b) FE model of the 2D material/substrate system under the indentation load, in which both 2D material/substrate sample and indenter tip are simplified as the axial symmetric models.

