Supporting Information: The Role of Different Energy Portions on the 2D/3D Stability Swapping for 13-Atoms Metal Clusters

Diego Guedes-Sobrinho, ${ }^{,{ }^{\dagger} \dagger}$ Renato P. Orenha, ${ }^{\ddagger}$ Renato L. T. Parreira, ${ }^{\ddagger}$ Glaucio R. Nagurniak, ${ }^{\text {II }}$ Gabriel Reynald Da Silva, ${ }^{\dagger}$ and Maurício J. Piotrowski*,§
\dagger Chemistry Department, Federal University of Paraná, CEP 81531-980, Curitiba, Brazil \ddagger Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil

IIChemistry Department, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR Brazil
§Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900, Pelotas, RS, Brazil

E-mail: guedessobrinho@ufpr.br; mauriciomjp@gmail.com
Phone: +55(41)33613470; +55 5332757542

Table S1: Convergence tests for the relative total energy, $\Delta \mathbf{E}_{\text {Tot }}(\mathrm{eV})$, average weighted bond length, $d_{\mathrm{av}}(\AA)$, effective coordination number, ECN, and total magnetic moment, \mathbf{m}_{T}, with respect to the box size (L) used, where $L=09,11,13,15,17,19,21 \AA$.

L (Å)	DFT-PBE				DFT-PBE+D3				DFT-PBE+TS			
	$\Delta \mathrm{E}_{\text {Tot }}$	$d_{\text {av }}$	ECN	$\mathrm{m}_{\text {T }}$	$\Delta \mathrm{E}_{\text {Tot }}$	$d_{\text {av }}$	ECN	$\mathrm{m}_{\text {T }}$	$\Delta \mathrm{E}_{\text {Tot }}$	$d_{\text {av }}$	ECN	$\mathrm{m}_{\text {T }}$
09	6.99228	2.7408	5.0239	1.00	7.76965	2.7823	5.4675	1.00	7.99959	2.7489	5.4562	1.00
11	0.00915	2.8740	6.3963	5.00	0.15943	2.8800	6.3965	5.00	0.14997	2.8664	6.3965	5.00
13	0.00233	2.8747	6.3965	5.00	0.04324	2.8795	6.3965	5.00	0.04768	2.8663	6.3965	5.00
15	0.00341	2.8747	6.3965	5.00	0.01876	2.8798	6.3965	5.00	0.02332	2.8665	6.3965	5.00
17	0.00330	2.8747	6.3965	5.00	0.00013	2.8791	6.3965	5.00	0.00221	2.8670	6.3965	5.00
19	0.00315	2.8747	6.3965	5.00	0.00155	2.8792	6.3965	5.00	0.00185	2.8666	6.3965	5.00
21	0.00000	2.8747	6.3965	5.00	0.00000	2.9793	6.3965	5.00	0.00000	2.8666	6.3965	5.00

I Computational Details

As implemented in VASP, ${ }^{1-3}$ the Kohn-Sham equations were solved employing the all-electron projector augmented wave method ${ }^{4,5}$ as implemented in VASP. ${ }^{1-3}$ For all calculations, we employed a cubic box with a distance of $17 \AA$, which yields a minimum distance of $8 \AA$ between the systems and their periodic images; and cutoff energies of $490 \mathrm{eV}, 313 \mathrm{eV}$, and 384 eV for $\mathrm{Cu}_{13}, \mathrm{Ag}_{13}$, and Au_{13} clusters, respectively, which are larger by 25% than the values recommended by VASP. We carry out convergence tests for the main computational parameters, for example, for the size of the box (used in the VASP simulation) to avoid interaction between the periodic images. In Table S1, we show the convergence tests with regard to box size by considering three approaches: DFT-PBE, DFT-PBE + D3 (empirical), and DFT-PBE + TS (semi empirical electronic density dependent) for Au_{13} as ICO, where the relative total energy is given in relation to the largest box size ($21 \AA$). From these results, it is possible to verify that a box with a $17 \AA$ side (producing a distance of $8 \AA$ among the periodic images) is sufficiently precise to generate a good correspondence between cost and benefit.

For the Brillouin zone (BZ) integration, we have considered a single k-point (Γ-point) for the clusters since there is no dispersion of the electronic states along any direction within the BZ. For all calculations, the equilibrium geometries were obtained when the atomic forces on every atom were smaller than $0.01 \mathrm{eV} / \AA$ with a total energy convergence criterion of $1.0 \times 10^{-6} \mathrm{eV}$.

II Energetic Analysis for Au_{13} as a Fixed ICO Configuration with SOC

Figure S1 depicts the energy decomposition for Au_{13} for 2 D and 3 D with respect to the fixed icosahedral (ICO) structure.

Figure S1: Relative total energy ($\Delta \mathrm{E}_{\text {Tot }}$), relative Kohn-Sham energy ($\Delta \mathrm{E}_{\mathrm{KS}}$), and relative van der Waals energy ($\Delta \mathrm{E}_{\text {disp }}$) for Au_{13} calculations with SOC by including relative SOC energy ($\Delta \mathrm{E}_{\text {Soc }}$), between 2D-ICO ${ }^{\text {fixed }}$ and 3D-ICO ${ }^{\text {fixed }}$ configurations obtained by PBE + SOC combined with vdW, $+U$, and $+U+\mathrm{vdW}$, where $U=1.0$ and 2.0 eV , from which vdW is D3, D3BJ, TS, TSSCS, or MBD.

III Energy Decomposition Analysis

Below, we provided a figure (Figure S2) with the fragmentation model together with the graphical energy decomposition for the $\mathrm{Cu}_{13}, \mathrm{Ag}_{13}$, and Au_{13} clusters in the 2D, 3 D , and ICO configurations, where the color atoms represent the fragment 1 , while the rest of the atoms represent the fragment 2 . In addition, we provided a table (Table S2) with the energy decomposition analysis (EDA).

To improve the understanding of how the local chemical environment (coordination), encompassed in geometries (2D, 3D, and ICO), affects the $\mathrm{Cu}_{13}, \mathrm{Ag}_{13}$, and Au_{13} bonding situation, we

Figure S2: Fragmentation model for the (a) Cu_{13}, (b) Ag_{13}, and (c) Au_{13} clusters in the 2D, 3D, and ICO configurations and the respective energy decomposition analysis. Atoms colour code: Cu orange, Ag - light blue, and Au - yellow.

Table S2: The EDA-NOCV analysis of 6- and 7-atom (where TM $=\mathbf{C u}, \mathbf{A g}$, and $\mathbf{A u}$) fragment-interactions considering the 2D, 3D, and ICO configurations for $\mathbf{C u}_{13}, \mathbf{A g}_{13}$, and Au_{13} clusters, using PBE+D3-ZORA/TZP. All values are in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$, except the values between parenthesis, which are the percentage contributions to $\Delta E^{\text {int }}$ (indicated by ${ }^{a}$), the percentage contribution to $\Delta E_{t o t}^{o r b}$ (indicated by ${ }^{b}$), and the Hirshfeld charges that are expressed in atomic units, where q_{1} and q_{2} denote the Hirshfeld charges of each fragment (indicated by ${ }^{c}$).

	2D - Cu_{13}	3D - Cu_{13}	ICO - Cu_{13}	2D- Ag_{13}	3D- Ag_{13}	ICO - Ag_{13}	2D $-\mathrm{Au}_{13}$	3D-Au ${ }_{13}$	ICO - Au_{13}
$\Delta E^{\text {int }}$	-132.98	-146.41	-146.27	-104.77	-115.56	-107.54	-134.62	-146.67	-117.12
$\Delta E^{\text {Pauli }}$	351.27	628.92	844.29	271.34	428.74	600.60	424.26	685.92	773.62
$\Delta E^{e l s t}$	-319.13	-536.11	-700.20	-246.91	-368.08	-497.61	-355.90	-550.59	-603.46
${ }^{a}$ (\%)	(65.90)	(69.15)	(70.69)	(65.65)	(67.62)	(70.27)	(63.68)	(66.13)	(67.75)
$\Delta E_{\text {tot }}^{\text {orb }}$	-157.18	-226.77	-277.55	-121.79	-162.89	-196.57	-192.31	-262.20	-267.07
${ }^{a}$ (\%)	(32.46)	(29.25)	(28.02)	(32.38)	(29.93)	(27.76)	(34.41)	(31.49)	(29.98)
$\Delta E^{\text {disp }}$	-7.94	-12.45	-12.82	-7.41	-13.33	-13.97	-10.66	-19.80	-20.21
${ }^{a}$ (\%)	(1.64)	(1.61)	(1.29)	(1.97)	(2.45)	(1.97)	(1.91)	(2.38)	(2.27)
$\Delta E_{1}^{o r b}$	-56.44	-71.54	-59.85	-48.23	-54.97	-37.15	-68.16	-63.65	-53.40
${ }^{b}$ (\%)	(35.91)	(31.55)	(21.56)	(39.60)	(33.75)	(18.90)	(35.44)	(24.28)	(19.99)
$\Delta E_{2}^{\text {orb }}$	-29.68	-33.99	-51.19	-26.03	-30.62	-46.43	-36.42	-46.18	-49.44
${ }^{b}$ (\%)	(18.88)	(14.99)	(18.44)	(21.37)	(18.80)	(23.62)	(18.94)	(17.61)	(18.51)
$\Delta E_{3}^{\text {orb }}$	-20.02	-25.20	-27.24	-15.06	-19.97	-31.57	-20.94	-37.45	-27.42
${ }^{b}$ (\%)	(12.73)	(11.11)	(9.81)	(12.37)	(12.26)	(16.06)	(10.89)	(14.28)	(10.27)
$\Delta E_{\text {res }}^{\text {orb }}$	-51.04	-96.04	-139.27	-32.47	-57.33	-81.42	-66.79	-114.92	-136.81
${ }^{b}$ (\%)	(32.48)	(42.35)	(50.19)	(26.66)	(35.19)	(41.42)			
${ }^{c} q_{1}$	-0.0686	0.0084	-0.0933	-0.0752	0.0312	-0.0425	-0.0515	0.0276	-0.0064
${ }^{c} q_{2}$	0.0687	-0.0084	0.0934	0.0753	-0.0312	0.0426	0.0516	-0.0276	0.0065

have measured the magnitude and nature of $\mathrm{Cu}_{6} \cdots \mathrm{Cu}_{7}, \mathrm{Ag}_{6} \cdots \mathrm{Ag}_{7}$, and $\mathrm{Au}_{6} \cdots \mathrm{Au}_{7}$ interactions. We carried out DFT-PBE+D3/TZP calculations considering the splitted cluster in sub-clusters, as two open-shell interacting fragments, subject to EDA-NOCV analysis. It is evidenced by the energy dataset that the stabilization energies between 6-and 7-atom fragments are in line with the overall energy order (relative total energies) for the coinage-metal clusters obtained from $\mathrm{PBE}+\mathrm{D} 3$.

The 3D configuration presented the largest bond magnitude between the fragments for all systems with $\Delta E_{\text {tot }}^{3 \mathrm{D}}$ values of $-0.14 \mathrm{kcal} \cdot \mathrm{mol}^{-1},-8.02 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$, and $-29.55 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$, while the $\Delta E_{\mathrm{tot}}^{2 \mathrm{D}}$ values were given by $13.29 \mathrm{kcal} \cdot \mathrm{mol}^{-1}, 2.77 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$, and $-17.50 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$, respectively.

To facilitate the analysis, we have included the percentage values of contributions to $\Delta E^{\text {int }}$ term (indicated by ${ }^{a}$ in Table S2), from which it is possible to observe the same well-established trend for the highest weight contributions, $\Delta E^{e l s t}$ and $\Delta E_{\text {tot }}^{o r b}$, for all systems in relation to the different
structural patterns. All clusters show primarily a significant Pauli repulsion term, followed by an expressive electrostatic character, and after, by a covalent feature, where the $\Delta E^{e l s t}$ percentage contributions follow the $2 \mathrm{D}<3 \mathrm{D}<\mathrm{ICO}$ trend, while the $\Delta E_{\text {tot }}^{\text {orb }}$ percentage contributions have an opposite trend, i.e., 2D $>3 \mathrm{D}>$ ICO. Consequently, we observe that the interaction-intensifications between the fragments of the 3D structure, which lead to their greater stabilization in relation to other structural motifs, is not attributed to the prominence in any of the most contributory terms of $\Delta E^{\text {int }}$, but rather, by an intermediate relief of steric repulsion and by the energy balance of ionic and covalent contributions in the cohesive interactions of the 3D structure.

It can be seen that the ionic character is dominant in structures with a more packed chemical environment (close-packed configurations, e.g., ICO), i.e., the largest energy contributions of the electrostatic term $\left(\Delta E^{e l s t}\right)$ are managed in accordance with the larger coordination of structural models, for the clusters of the three congener elements. The covalent character $\left(\Delta E_{\text {tot }}^{o r b}\right)$, on the other hand, stands out in 2D structures, with a rich overlap of fragment orbitals, which can be justified by the directional character of chemical bonds being quite evident in order to fulfill the planarity of this structural model. Within this conjecture, the 3D structure presents itself as an intermediary structural model between the 2D and ICO geometries, reaching the energetic balance of the contributions between a more ionic and a more covalent character, showing itself as the preferred structural pattern for the three coinage-metals.

Another factor that corroborates the stabilization of the 3D structure, to a lesser extent, concerns the percentage values of $\Delta E^{d i s p}$, which reach values between $1.29\left(\mathrm{ICO}-\mathrm{Cu}_{13}\right)$ and 2.45% (3D Ag_{13}). Overall, the 3D structure has the most salient dispersive contributions, with the exception of Cu_{13} clusters where the $\Delta E^{\text {disp }}$ percentage has similar values for both 2 D and 3 D structures. Thus, this result reinforces the larger energetic improvement of the 3D structure by vdW corrections, which would be equivalent to elucidate a higher sensitivity of these structures in relation to dispersive corrections.

In Table S2 we also observe the decomposition of the covalency degree, given by $\Delta E_{t o t}^{o r b}$, into sub-terms representing the different types of covalent bondings, more specifically, σ, π, δ, among
others. For all clusters, it was obtained more than 10 sub-terms of $\Delta E_{\text {tot }}^{\text {orb }}$, however, the first three terms are shown in Table S2, since they are the most energetically significant, while the remaining ones were grouped in the $\Delta E_{\text {res }}^{\text {orb }}$ term and are considered as polarization terms. Analyzing the percentage contribution to $\Delta E_{\text {tot }}^{o r b}$ (indicated by ${ }^{b}$ in Table S2) we observe that there is a similar trend for the three systems along the structural models, where the σ bond character, shown in $\Delta E_{1}^{o r b}$, follows the $2 \mathrm{D}>3 \mathrm{D}>\mathrm{ICO}$ trend, corroborating the more covalent character present in 2 D structures with planar directionality. In contrast, we observe that the orbital residual terms (grouped in $\Delta E_{r e s}^{o r b}$), which contribute to the polarization, show a trend for all systems given by $2 \mathrm{D}<3 \mathrm{D}<\mathrm{ICO}$, consequently, larger $\Delta E_{\text {res }}^{o r b}$ term represents a more spread out charge flux in full correlation with higher coordination number. Therefore, we need to highlight again that the 3D structure can be found in a balance level between an exacerbated covalent character (2D) and a huge polarization effect (ICO).

Finally, we can also show the smaller π binding character ($\Delta E_{2}^{\text {orb }}$) for the 3D structural model in relation to the other patterns, followed by a not very clear trend for the $\Delta E_{3}^{\text {orb }}$ contributions. It is also worth mentioning that the Hirshfeld charge analysis showed just a few amount of charge exchanged between sub-cluster fragments, being used much more as a check analysis.

Table S3: Hybridization index (h) for the $\mathbf{C u}_{13}, \mathrm{Ag}_{13}$, and Au_{13} clusters in anum2D, ICO, and 3D configurations through all protocols employed, i.e., PBE, PBE+vdW, PBE+SOC, $\mathbf{P B E}+\mathbf{S O C}+\mathrm{vdW}, \mathrm{PBE}+U, \mathrm{PBE}+U+\mathrm{vdW}, \mathrm{PBE}+U+\mathrm{SOC}$, and $\mathrm{PBE}+U+\mathrm{SOC}+\mathrm{vdW}$, where $U=1.0$ and 2.0 eV and vdW is equal to D3, D3BJ, TS, TSSCS, or MBD. For SOC calculations of the Au_{13} clusters, the ICO configuration changes to CUB, so that the results for ICO fixed (geometry) with SOC are presented in last column.

	Cu_{13}			Ag_{13}			Au_{13}			
	2D	ICO	3D	2D	ICO	3D	2D	ICO	3D	ICO fixed
PBE	0.54	0.21	0.31	0.82	0.48	0.57	0.82	0.28	0.51	
D3	0.54	0.21	0.31	0.86	0.48	0.58	0.83	0.28	0.53	
D3BJ	0.54	0.21	0.31	0.87	0.49	0.58	0.82	0.28	0.52	
TS	0.54	0.21	0.31	0.87	0.49	0.58	0.82	0.28	0.53	
TSSCS	0.54	0.21	0.31	0.87	0.48	0.58	0.83	0.28	0.52	
MBD	0.54	0.21	0.31	0.87	0.50	0.58	0.83	0.28	0.52	
SOC	0.94	0.40	0.58	1.60	0.91	1.14	1.52	0.72	1.00	0.61
D3	0.95	0.41	0.59	1.63	0.92	1.15	1.53	0.73	1.04	0.61
D3BJ	0.95	0.41	0.59	1.65	0.94	1.15	1.53	0.72	1.00	0.61
TS	0.96	0.41	0.60	1.65	0.94	1.16	1.53	0.72	1.00	0.61
TSSCS	0.95	0.41	0.59	1.66	0.93	1.16	1.53	0.73	1.00	0.61
MBD	0.95	0.41	0.59	1.67	0.95	1.17	1.53	0.73	1.00	0.61
$\mathrm{U}_{1 \mathrm{eV}}$	0.54	0.20	0.31	0.71	0.46	0.56	0.82	0.29	0.53	
D3	0.55	0.20	0.31	0.70	0.46	0.58	0.82	0.29	0.58	
D3BJ	0.55	0.20	0.31	0.71	0.46	0.57	0.82	0.29	0.53	
TS	0.55	0.21	0.31	0.72	0.46	0.57	0.81	0.29	0.56	
TSSCS	0.55	0.21	0.31	0.72	0.46	0.57	0.81	0.29	0.54	
MBD	0.55	0.21	0.31	0.72	0.47	0.57	0.82	0.29	0.53	
$\mathrm{U}_{2 \mathrm{eV}}$	0.55	0.20	0.31	0.55	0.41	0.63	0.89	0.32	0.61	
D3	0.55	0.21	0.32	0.59	0.41	0.59	0.89	0.32	0.63	
D3BJ	0.55	0.21	0.31	0.55	0.42	0.64	0.90	0.32	0.61	
TS	0.54	0.21	0.31	0.56	0.42	0.62	0.90	0.32	0.62	
TSSCS	0.54	0.21	0.31	0.57	0.41	0.63	0.90	0.32	0.61	
MBD	0.55	0.21	0.31	0.58	0.43	0.65	0.89	0.32	0.61	
$\mathrm{U}_{\mathrm{leV}}+\mathrm{SOC}$	0.94	0.40	0.59	1.28	0.86	1.16	1.57	0.73	1.02	0.62
D3	0.96	0.40	0.59	1.32	0.85	1.23	1.57	0.73	1.05	0.62
D3BJ	0.95	0.40	0.59	1.35	0.87	1.17	1.57	0.73	1.03	0.62
TS	0.96	0.41	0.59	1.34	0.87	1.18	1.57	0.74	1.03	0.62
TSSCS	0.96	0.40	0.60	1.35	0.86	1.18	1.57	0.73	1.03	0.62
MBD	0.96	0.40	0.59	1.35	0.90	1.18	1.57	0.73	1.03	0.62
$\mathrm{U}_{2 \mathrm{eV}}+\mathrm{SOC}$	0.96	0.41	0.60	1.06	0.76	1.23	3.17	1.61	2.24	1.33
D3	0.96	0.40	0.60	1.08	0.76	1.19	3.19	1.62	2.27	1.33
D3BJ	0.96	0.40	0.61	1.11	0.80	1.26	3.19	1.66	2.27	1.33
TS	0.97	0.41	0.60	1.11	0.78	1.25	3.20	1.63	2.27	1.33
TSSCS	0.96	0.41	0.60	1.11	0.76	1.24	3.20	1.61	2.27	1.33
MBD	0.97	0.41	0.60	1.12	0.83	1.28	3.19	1.63	2.25	1.33

References

(1) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Open-Shell Transition Metals. Phys. Rev. B 1993, 48, 13115-13126.
(2) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186.
(3) Hafner, J. Ab - initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044-2078.
(4) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953-17979.
(5) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Agumented-Wave Method. Phys. Rev. B 1999, 59, 1758-1775.

