SUPPLEMENTARY INFORMATION

Charge doping to flat AgF₂ monolayers in a chemical capacitor setup

Daniel Jezierski¹, Adam Grzelak^{1*}, Liu Xiao-Qiang², Shishir Kumar Pandey², Maria N. Gastiasoro,³ José Lorenzana³, Ji Feng^{2,4} and Wojciech Grochala^{1*}

¹Center of New Technologies, University of Warsaw, 02089 Warsaw, Poland ²International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China ³Institute for Complex Systems (ISC), Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Università di Roma "La Sapienza", 00185 Rome, Italy ⁴Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China

*a.grzelak@cent.uw.edu.pl, w.grochala@cent.uw.edu.pl

S1. Thermodynamics of fluorination/oxidation reactions

In this section we discuss the stability of hypothetical fluorinated AgF_2 monolayers, in terms of the system's tendency towards decomposition into AgF_2 and F_2 . We will consider only energy-preferred (GS) AgF_{2+x} solutions: for RMF – flat and without distortion in the entire fluorination range; for LiF (LF) substrate – flat ($x = \frac{1}{2}$ (I) and 1) and slightly puckered ($x = \frac{1}{2}$ and $\frac{1}{2}$ (II)) AgF_{2+x} monolayer.

The reaction (eq. 1) of fluorination of AgF₂ monolayer:

(Eq. 1)
$$AgF_2 + \frac{x}{2}F_2 \rightarrow AgF_{2+}$$

The ΔG value of fluorination reaction (eq. 1) is defined as follows:

(Eq. 2)
$$\Delta G_{fluor.} = G_{AgF_2 + x-1} \left(\frac{G_x}{2} + \frac{G_x}{2} + \frac{G_x}{2} \right)$$

The enthalpy of reaction in eq. 1), calculated in the manner presented in eq. 2, enables us to estimate the stability of each AgF_{2+x} monolayer, formed upon fluorination. For negative values of

 G_x

 $\Delta G_{fluor.}$, we can expect the formation of thermodynamically stable AgF_{2+x} phases. The 2^{F_2} value is ground-state energy of α -F₂ crystal, obtained from DFT calculations, where Δ H value is equal 0.

To face experimental-related problems of fluorination, we also calculated temperature values (eq. 3), in which entropy term due to $nF_2(gas)$ gas evolution is equal to energy effect (eq.2) of AgF₂ monolayer fluorination, considering the number of fluorine atoms involved. The standard entropy (ΔS°) for 1 mole of F₂ gas is equal ca. 202.8 J/mol*K.¹ It yields ΔG equal to *ca.* -1.05 meV for 0.5 molecule of F₂ at 1K, based on equation 3. Therefore, the temperature may be a factor by changing which, one can manipulate the degree of AgF₂ fluorination. Dependence of enthalpy of AgF₂ monolayer fluorination reaction (eq.1, eq.2) and temperatures evaluated from Eq. 3 on the degree of fluorination, are presented in the Fig. S1 (**A**) and (**B**).

$$\Delta G_{x}_{\frac{x}{2}F_{2}} = -\frac{x}{2}TS_{(F_{2}gas)}$$
(Eq. 3)

Figure S1. A – Dependence of $-\Delta G_{fluor}$ on AgF₂ fluorination degree (x) for RMF and LF substrates, B – dependence of temperature versus AgF₂ fluorination degree of monolayer, placed on RMF and LF.

Fig. S1 (**A**) shows the dependence of $\Delta G_{fluor.}$ on degree of fluorination. The enthalpies of fluorination reactions (eq.1) are negative within the entire fluorination range studied. For LF values are slightly lower, compared to RMF. On the basis of these results, it may be tempted to state, that with Ag-Ag distance decreasing, the tendency toward fluorination increases. However, for full fluorination of AgF₂ monolayer, enthalpies of fluorination reaction differ only by 10.9 meV/FU between two different substrates; for RMF and LiF: ca. -139.9 meV/FU and ca. -129.0 meV/FU, respectively. This is also reflected on the values of temperatures, below which the given AgF_{2+x} phase may exist. The *x* = $\frac{1}{4}$ fluorination of AgF₂ monolayer should be feasible around 380K and 264K for RMF and LF, respectively. As a degree of fluorination progresses, the temperature values decrease; from 218K (*x* = $\frac{1}{2}$ (I)) to 123K (*x* = 1), and from 285K *x* = $\frac{1}{2}$ (I)) to 133K (*x* = 1), for LF and RMF, respectively. Rather low values of temperatures marking stability of Ag(III) fluoride agree with the fact that AgF₃ prepared in the laboratory is quite thermally unstable.^{ref Zemva}

In the case of indirect fluorination, the reaction is unfavorable in the entire range of x (fig. S2).

Figure S2. Dependence of $\Delta G_{fluor.}$ on AgF₂ fluorination degree (*x*) for indirectly fluorinated LF-AgF₂-Li₂F_{2+x} systems.

S2. Expanded eDOS graphs for hole-doped systems.

(1) Direct fluorination: RMF-AgF $_{2+x}$ and LF-AgF $_{2+x}$ systems

Figure S4. Orbital-resolved eDOS for d_{x2-y2} and d_{z2} orbitals for silver atoms from AgF₂ (right) and AgF₃ (left) monolayer placed on RMF substrate

(2) Indirect fluorination: LF-AgF₂Li₂F_{2+x} systems

Figure S4. Atom-resolved (upper part) and orbital-resolved (lower part) eDOS for AgF₂ monolayer within the entire (0%, 25%, 50% and 100%) of Li₂F₂ atop layer fluorination.

(3) Reaction with strong oxidizer: RMF-AgF₂-PtF₆ system

Figure S5. Atom-resolved pDOS for: (**A**) AgF₂ monolayer on RMF substrate, (**B1**) AgF₂ bonded to PtF6 molecule, and PtF₆ (**B2**). The right part presents orbital-resolved DOS of Ag α -d_{x2-y2} and α -d_{z2} states for: (**C**) pristine AgF₂ and (**D**) bonded to PtF₆ monolayer.

S3. Selected structures studied.

RbMgF₃-AgF₂

CIF file created by FINDSYM, version 7.1.3

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 4.0524000000 _cell_length_b 4.0524000000 _cell_length_c 76.3149870000 _cell_angle_alpha 90.0000000000 _cell_angle_beta 90.0000000000 _cell_angle_gamma 90.000000000 _cell_volume 1253.2405771891

_symmetry_space_group_name_H-M "P 4/m 2/m 2/m" _symmetry_Int_Tables_number 123 _space_group.reference_setting '123:-P 4 2' _space_group.transform_Pp_abc a,b,c;0,0,0

loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 x,-y,-z 3 -x,y,-z 4 -x,-y,z 5 -y,-x,-z 6 -y,x,z 7 y,-x,z 8 y,x,-z 9 -x,-y,-z 10 -x,y,z 11 x,-y,z 12 x,y,-z 13 y,x,z 14 y,-x,-z 15 -y,x,-z 16 -y,-x,z loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_label atom site fract x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_fract_symmform Rb1 Rb 2 h 0.50000 0.50000 0.28732 1.00000 0,0,Dz Rb2 Rb 2 h 0.50000 0.50000 0.34108 1.00000 0,0,Dz Rb3 Rb 2 h 0.50000 0.50000 0.39399 1.00000 0,0,Dz Rb4 Rb 2 h 0.50000 0.50000 0.44692 1.00000 0,0,Dz Rb5 Rb 1 d 0.50000 0.50000 0.50000 1.00000 0,0,0 Mg1 Mg 2 g 0.00000 0.00000 0.31473 1.00000 0,0,Dz Mg2 Mg 2 g 0.00000 0.00000 0.36758 1.00000 0,0,Dz Mg3 Mg 2 g 0.00000 0.00000 0.42042 1.00000 0,0,Dz Mg4 Mg 2 g 0.00000 0.00000 0.47346 1.00000 0,0,Dz F1 F 2 g 0.00000 0.00000 0.28862 1.00000 0,0,Dz F2 F 4 i 0.00000 0.50000 0.31460 1.00000 0,0,Dz F3 F 2 g 0.00000 0.00000 0.34112 1.00000 0,0,Dz F4 F 4 i 0.00000 0.50000 0.36762 1.00000 0,0,Dz F5 F 2 g 0.00000 0.00000 0.39397 1.00000 0,0,Dz F6 F 4 i 0.00000 0.50000 0.42045 1.00000 0,0,Dz F7 F 2 g 0.00000 0.00000 0.44691 1.00000 0,0,Dz F8 F 4 i 0.00000 0.50000 0.47346 1.00000 0,0,Dz F9 F 1 b 0.00000 0.00000 0.50000 1.00000 0,0,0 F10 F 4 i 0.00000 0.50000 0.25677 1.00000 0,0,Dz Ag1 Ag 2 g 0.00000 0.00000 0.74299 1.00000 0,0,Dz

end of cif

```
\frac{1}{RbMgF_{3}-AgF_{2.5}} (I) (\frac{1}{2} fluorination)
```

```
# CIF file created by FINDSYM, version 7.1.3
data_findsym-output
_audit_creation_method FINDSYM
_cell_length_a 5.7309590402
_cell_length_b 5.7309590402
_cell_length_c 80.3149870000
_cell_angle_alpha 90.000000000
_cell_angle_beta 90.000000000
_cell_angle_gamma 90.000000000
              2637.8567204582
_cell_volume
_symmetry_space_group_name_H-M "P 4/m 2/m 2/m"
_symmetry_Int_Tables_number 123
_space_group.reference_setting '123:-P 4 2'
_space_group.transform_Pp_abc a,b,c;0,0,0
loop_
_space_group_symop_id
_space_group_symop_operation_xyz
1 x,y,z
2 x,-y,-z
3 -x,y,-z
4 -x,-y,z
5 -y,-x,-z
6 -y,x,z
7 y,-x,z
8 y,x,-z
9 -x,-y,-z
10 -x,y,z
11 x,-y,z
12 x,y,-z
13 y,x,z
14 y,-x,-z
15 -y,x,-z
16 -y,-x,z
loop_
_atom_site_label
_atom_site_type_symbol
atom site symmetry multiplicity
_atom_site_Wyckoff_label
_atom_site_fract_x
_atom_site_fract_y
```

_atom_site_fract_z _atom_site_occupancy _atom_site_fract_symmform Rb1 Rb 4 i 0.00000 0.50000 0.70261 1.00000 0,0,Dz Rb2 Rb 4 i 0.00000 0.50000 0.65153 1.00000 0,0,Dz Rb3 Rb 4 i 0.00000 0.50000 0.60103 1.00000 0,0,Dz Rb4 Rb 4 i 0.00000 0.50000 0.55049 1.00000 0,0,Dz Rb5 Rb 2 e 0.00000 0.50000 0.50000 1.00000 0,0,0 Mg1 Mg 2 g 0.00000 0.00000 0.32340 1.00000 0,0,Dz Mg2 Mg 2 h 0.50000 0.50000 0.32343 1.00000 0,0,Dz Mg3 Mg 2 g 0.00000 0.00000 0.37375 1.00000 0,0,Dz Mg4 Mg 2 h 0.50000 0.50000 0.37376 1.00000 0,0,Dz Mg5 Mg 2 g 0.00000 0.00000 0.42421 1.00000 0,0,Dz Mg6 Mg 2 h 0.50000 0.50000 0.42421 1.00000 0,0,Dz Mg7 Mg 2 g 0.00000 0.00000 0.47479 1.00000 0,0,Dz Mg8 Mg 2 h 0.50000 0.50000 0.47479 1.00000 0,0,Dz F1 F 2 g 0.00000 0.00000 0.29721 1.00000 0,0,Dz F2 F 2 h 0.50000 0.50000 0.29904 1.00000 0,0,Dz F3 F 8 r 0.25000 0.25000 0.67671 1.00000 Dx,Dx,Dz F4 F 2 g 0.00000 0.00000 0.34851 1.00000 0,0,Dz F5 F 2 h 0.50000 0.50000 0.34855 1.00000 0,0,Dz F6 F 8 r 0.25000 0.25000 0.62625 1.00000 Dx,Dx,Dz F7 F 2 g 0.00000 0.00000 0.39898 1.00000 0,0,Dz F8 F 2 h 0.50000 0.50000 0.39898 1.00000 0,0,Dz F9 F 8 r 0.25000 0.25000 0.57581 1.00000 Dx,Dx,Dz F10 F 2 g 0.00000 0.00000 0.44949 1.00000 0,0,Dz F11 F 2 h 0.50000 0.50000 0.44949 1.00000 0,0,Dz F12 F 8 r 0.25000 0.25000 0.52517 1.00000 Dx,Dx,Dz F13 F 1 b 0.00000 0.00000 0.50000 1.00000 0,0,0 F14 F 1 d 0.50000 0.50000 0.50000 1.00000 0,0,0 F15 F 2 g 0.00000 0.00000 0.75472 1.00000 0,0,Dz F16 F 8 r 0.25000 0.25000 0.72894 1.00000 Dx,Dx,Dz Ag1 Ag 2 g 0.00000 0.00000 0.73049 1.00000 0,0,Dz Ag2 Ag 2 h 0.50000 0.50000 0.73079 1.00000 0,0,Dz

end of cif

RbMgF₃-AgF₃ (full fluorination)

CIF file created by FINDSYM, version 7.1.3

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 4.0524000000 _cell_length_b 4.0524000000 _cell_length_c 80.3149870000 _cell_angle_alpha 90.0000000000

```
_cell_angle_beta 90.000000000
_cell_angle_gamma 90.000000000
              1318.9283602291
_cell_volume
_symmetry_space_group_name_H-M "P 4/m 2/m 2/m"
_symmetry_Int_Tables_number 123
_space_group.reference_setting '123:-P 4 2'
_space_group.transform_Pp_abc a,b,c;0,0,0
loop_
_space_group_symop_id
_space_group_symop_operation_xyz
1 x,y,z
2 x,-y,-z
3 -x,y,-z
4 -x,-y,z
5 -y,-x,-z
6 -y,x,z
7 y,-x,z
8 y,x,-z
9 -x,-y,-z
10 -x,y,z
11 x,-y,z
12 x,y,-z
13 y,x,z
14 y,-x,-z
15 -y,x,-z
16 -y,-x,z
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_symmetry_multiplicity
_atom_site_Wyckoff_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
_atom_site_fract_symmform
Rb1 Rb 2 h 0.50000 0.50000 0.29701 1.00000 0,0,Dz
Rb2 Rb 2 h 0.50000 0.50000 0.34821 1.00000 0,0,Dz
Rb3 Rb 2 h 0.50000 0.50000 0.39891 1.00000 0,0,Dz
Rb4 Rb 2 h 0.50000 0.50000 0.44951 1.00000 0,0,Dz
Rb5 Rb 1 d 0.50000 0.50000 0.50000 1.00000 0,0,0
Mg1 Mg 2 g 0.00000 0.00000 0.32297 1.00000 0,0,Dz
Mg2 Mg 2 g 0.00000 0.00000 0.37360 1.00000 0,0,Dz
Mg3 Mg 2 g 0.00000 0.00000 0.42420 1.00000 0,0,Dz
Mg4 Mg 2 g 0.00000 0.00000 0.47479 1.00000 0,0,Dz
```

F1 F 2 g 0.00000 0.00000 0.29750 1.00000 0,0,Dz
F2 F 4 i 0.00000 0.50000 0.32284 1.00000 0,0,Dz
F3 F 2 g 0.00000 0.00000 0.34828 1.00000 0,0,Dz
F4 F 4 i 0.00000 0.50000 0.37358 1.00000 0,0,Dz
F5 F 2 g 0.00000 0.00000 0.39894 1.00000 0,0,Dz
F6 F 4 i 0.00000 0.50000 0.42419 1.00000 0,0,Dz
F7 F 2 g 0.00000 0.00000 0.44949 1.00000 0,0,Dz
F8 F 4 i 0.00000 0.50000 0.47483 1.00000 0,0,Dz
F9 F 1 b 0.00000 0.00000 0.50000 1.00000 0,0,Dz
F10 F 2 g 0.00000 0.00000 0.75402 1.00000 0,0,Dz
F11 F 4 i 0.00000 0.50000 0.27206 1.00000 0,0,Dz
Ag1 Ag 2 g 0.00000 0.00000 0.73009 1.00000 0,0,Dz

end of cif

RbMgF₃-AgF₂-PtF₆ (strong oxidizer)

CIF file created by FINDSYM, version 7.1.3

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 5.7309590000 _cell_length_b 5.7309590000 _cell_length_c 76.3149870000 _cell_angle_alpha 90.0000000000 _cell_angle_beta 90.0000000000 _cell_angle_gamma 90.000000000 _cell_volume 2506.4811192490

_symmetry_space_group_name_H-M "P 4/m 2/m 2/m" _symmetry_Int_Tables_number 123 _space_group.reference_setting '123:-P 4 2' _space_group.transform_Pp_abc a,b,c;0,0,0

loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 x,γ,z 2 x,-γ,-z 3 -x,γ,-z 3 -x,γ,-z 4 -x,-γ,z 5 -γ,-x,-z 6 -γ,x,z 7 γ,-x,z 8 γ,x,-z 9 -x,-γ,-z 11 x,-y,z 12 x,y,-z 13 y,x,z 14 y,-x,-z 15 -y,x,-z 16 -y,-x,z loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_fract_symmform Pt1 Pt 2 h 0.50000 0.50000 0.80015 1.00000 0,0,Dz Rb1 Rb 4 i 0.00000 0.50000 0.71337 1.00000 0,0,Dz Rb2 Rb 4 i 0.00000 0.50000 0.65939 1.00000 0,0,Dz Rb3 Rb 4 i 0.00000 0.50000 0.60621 1.00000 0,0,Dz Rb4 Rb 4 i 0.00000 0.50000 0.55308 1.00000 0,0,Dz Rb5 Rb 2 e 0.00000 0.50000 0.50000 1.00000 0,0,0 Mg1 Mg 2 g 0.00000 0.00000 0.31416 1.00000 0,0,Dz Mg2 Mg 2 h 0.50000 0.50000 0.31422 1.00000 0,0,Dz Mg3 Mg 2 g 0.00000 0.00000 0.36728 1.00000 0,0,Dz Mg4 Mg 2 h 0.50000 0.50000 0.36729 1.00000 0,0,Dz Mg5 Mg 2 g 0.00000 0.00000 0.42034 1.00000 0,0,Dz Mg6 Mg 2 h 0.50000 0.50000 0.42035 1.00000 0,0,Dz Mg7 Mg 2 g 0.00000 0.00000 0.47346 1.00000 0,0,Dz Mg8 Mg 2 h 0.50000 0.50000 0.47346 1.00000 0,0,Dz F1 F 2 g 0.00000 0.00000 0.28823 1.00000 0,0,Dz F2 F 2 h 0.50000 0.50000 0.28754 1.00000 0,0,Dz F3 F 8 r 0.25000 0.25000 0.31398 1.00000 Dx,Dx,Dz F4 F 2 g 0.00000 0.00000 0.34076 1.00000 0,0,Dz F5 F 2 h 0.50000 0.50000 0.34076 1.00000 0,0,Dz F6 F 8 r 0.25000 0.25000 0.36723 1.00000 Dx,Dx,Dz F7 F 2 g 0.00000 0.00000 0.39387 1.00000 0,0,Dz F8 F 2 h 0.50000 0.50000 0.39386 1.00000 0,0,Dz F9 F 8 r 0.25000 0.25000 0.42032 1.00000 Dx,Dx,Dz F10 F 2 g 0.00000 0.00000 0.44691 1.00000 0,0,Dz F11 F 2 h 0.50000 0.50000 0.44691 1.00000 0,0,Dz F12 F 8 r 0.25000 0.25000 0.47346 1.00000 Dx,Dx,Dz F13 F 1 b 0.00000 0.00000 0.50000 1.00000 0,0,0 F14 F 1 d 0.50000 0.50000 0.50000 1.00000 0,0,0 F15 F 2 h 0.50000 0.50000 0.22503 1.00000 0,0,Dz F16 F 2 h 0.50000 0.50000 0.17531 1.00000 0,0,Dz

10 -x,y,z

F17 F8 t 0.81806 0.50000 0.79984 1.00000 Dx,0,DzF18 F8 r 0.24780 0.24780 0.25751 1.00000 Dx,Dx,DzAg1 Ag2 g 0.00000 0.00000 0.74341 1.00000 0,0,DzAg2 Ag2 h 0.50000 0.50000 0.74386 1.00000 0,0,Dz

end of cif

$LiF-AgF_2-Li_2F_2$

CIF file created by FINDSYM, version 7.1.3

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 5.6492174963 _cell_length_b 71.9581220000 _cell_length_c 5.6492174963 _cell_angle_alpha 90.0000000000 _cell_angle_beta 90.0000000000 _cell_angle_gamma 90.0000000000 _cell_volume 2296.4469188569

_symmetry_space_group_name_H-M "P 21/m 2/m 2/a" _symmetry_Int_Tables_number 51 _space_group.reference_setting '051:-P 2a 2a' _space_group.transform_Pp_abc a,b,c;0,0,0

loop_

_space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 x+1/2,-y,-z 3 -x,y,-z 4 -x+1/2,-y,z 5 -x,-y,-z 6 -x+1/2,y,z 7 x,-y,z 8 x+1/2,y,-z

loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy atom site fract symmform Li1 Li 4 g 0.00000 0.79283 0.00000 1.00000 0,Dy,0 Li2 Li 4 h 0.00000 0.20358 0.50000 1.00000 0,Dy,0 Li3 Li 4 g 0.00000 0.72091 0.00000 1.00000 0,Dy,0 Li4 Li 4 h 0.00000 0.27693 0.50000 1.00000 0,Dy,0 Li5 Li 4 k 0.25000 0.69423 0.25000 1.00000 0,Dy,Dz Li6 Li 4 k 0.25000 0.69469 0.75000 1.00000 0,Dy,Dz Li7 Li 4 h 0.00000 0.33328 0.50000 1.00000 0,Dy,0 Li8 Li 4 g 0.00000 0.66661 0.00000 1.00000 0,Dy,0 Li9 Li 4 k 0.25000 0.36102 0.25000 1.00000 0,Dy,Dz Li10 Li 4 k 0.25000 0.36101 0.75000 1.00000 0,Dy,Dz Li11 Li 4 g 0.00000 0.61116 0.00000 1.00000 0,Dy,0 Li12 Li 4 h 0.00000 0.38872 0.50000 1.00000 0,Dy,0 Li13 Li 4 k 0.25000 0.41673 0.75000 1.00000 0,Dy,Dz Li14 Li 4 k 0.25000 0.58327 0.25000 1.00000 0,Dy,Dz Li15 Li 4 g 0.00000 0.55551 0.00000 1.00000 0,Dy,0 Li16 Li 4 h 0.00000 0.55551 0.50000 1.00000 0,Dy,0 Li17 Li 4 k 0.25000 0.47224 0.75000 1.00000 0,Dy,Dz Li18 Li 4 k 0.25000 0.52776 0.25000 1.00000 0,Dy,Dz Li19 Li 2 b 0.00000 0.50000 0.00000 1.00000 0,0,0 Li20 Li 2 d 0.00000 0.50000 0.50000 1.00000 0.0.0 F1 F 4 k 0.25000 0.72172 0.75000 1.00000 0,Dy,Dz F2 F 4 k 0.25000 0.27698 0.25000 1.00000 0,Dy,Dz F3 F 4 g 0.00000 0.30570 0.00000 1.00000 0,Dy,0 F4 F 4 h 0.00000 0.69439 0.50000 1.00000 0,Dy,0 F5 F 4 k 0.25000 0.33333 0.75000 1.00000 0,Dy,Dz F6 F 4 k 0.25000 0.66668 0.25000 1.00000 0,Dy,Dz F7 F 4 h 0.00000 0.36104 0.50000 1.00000 0,Dy,0 F8 F 4 g 0.00000 0.63896 0.00000 1.00000 0,Dy,0 F9 F 4 k 0.25000 0.61119 0.25000 1.00000 0,Dy,Dz F10 F 4 k 0.25000 0.61119 0.75000 1.00000 0,Dy,Dz F11 F 4 h 0.00000 0.41673 0.50000 1.00000 0,Dy,0 F12 F 4 g 0.00000 0.41673 0.00000 1.00000 0,Dy,0 F13 F 4 k 0.25000 0.44449 0.25000 1.00000 0,Dy,Dz F14 F 4 k 0.25000 0.55551 0.75000 1.00000 0,Dy,Dz F15 F 4 h 0.00000 0.52776 0.50000 1.00000 0,Dy,0 F16 F 4 g 0.00000 0.47224 0.00000 1.00000 0,Dy,0 F17 F 2 f 0.25000 0.50000 0.75000 1.00000 0,0,Dz F18 F 2 f 0.25000 0.50000 0.25000 1.00000 0,0,Dz F19 F 4 k 0.25000 0.20700 0.25000 1.00000 0,Dy,Dz F20 F 4 k 0.25000 0.79744 0.75000 1.00000 0,Dy,Dz F21 F 4 g 0.00000 0.76476 0.00000 1.00000 0,Dy,0 F22 F 4 h 0.00000 0.24810 0.50000 1.00000 0,Dy,0 Ag1 Ag 4 k 0.25000 0.24168 0.25000 1.00000 0,Dy,Dz

end of cif

```
\frac{1}{2}LiF-AgF<sub>2</sub>-Li<sub>2</sub>F<sub>2.5</sub> (\frac{1}{2} fluorination)
```

CIF file created by FINDSYM, version 7.1.3 data_findsym-output _audit_creation_method FINDSYM _cell_length_a 5.6492174963 _cell_length_b 71.9581220000 _cell_length_c 5.6492174963 _cell_angle_alpha 90.000000000 _cell_angle_beta 90.000000000 _cell_angle_gamma 90.000000000 _cell_volume 2296.4469188569 _symmetry_space_group_name_H-M "P 1 2/m 1" _symmetry_Int_Tables_number 10 _space_group.reference_setting '010:-P 2y' _space_group.transform_Pp_abc a,b,c;0,0,0 loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 -x,y,-z 3 -x,-y,-z 4 x,-y,z loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_fract_symmform Li1 Li 2 i 0.00000 0.20479 0.00000 1.00000 0,Dy,0 Li2 Li 2 | 0.50000 0.20296 0.50000 1.00000 0,Dy,0 Li3 Li 2 k 0.00000 0.20651 0.50000 1.00000 0,Dy,0 Li4 Li 2 j 0.50000 0.20234 0.00000 1.00000 0,Dy,0 Li5 Li 2 i 0.00000 0.27890 0.00000 1.00000 0,Dy,0 Li6 Li 2 | 0.50000 0.27665 0.50000 1.00000 0,Dy,0 Li7 Li 2 k 0.00000 0.27903 0.50000 1.00000 0,Dy,0 Li8 Li 2 j 0.50000 0.27693 0.00000 1.00000 0,Dy,0 Li9 Li 4 o 0.25000 0.30577 0.25000 1.00000 Dx,Dy,Dz Li10 Li 4 o 0.75000 0.30529 0.25000 1.00000 Dx,Dy,Dz Li11 Li 2 | 0.50000 0.33325 0.50000 1.00000 0,Dy,0 Li12 Li 2 i 0.00000 0.33349 0.00000 1.00000 0,Dy,0 Li13 Li 2 k 0.00000 0.33336 0.50000 1.00000 0,Dy,0 Li14 Li 2 j 0.50000 0.33330 0.00000 1.00000 0,Dy,0 Li15 Li 4 o 0.75000 0.36101 0.75000 1.00000 Dx,Dy,Dz Li16 Li 4 o 0.25000 0.36098 0.75000 1.00000 Dx,Dy,Dz Li17 Li 2 i 0.00000 0.38881 0.00000 1.00000 0,Dy,0 Li18 Li 2 | 0.50000 0.38881 0.50000 1.00000 0,Dy,0 Li19 Li 2 k 0.00000 0.38886 0.50000 1.00000 0,Dy,0 Li20 Li 2 j 0.50000 0.38863 0.00000 1.00000 0,Dy,0 Li21 Li 4 o 0.25000 0.41673 0.75000 1.00000 Dx,Dy,Dz Li22 Li 4 o 0.25000 0.41673 0.25000 1.00000 Dx,Dy,Dz Li23 Li 2 i 0.00000 0.44449 0.00000 1.00000 0,Dy,0 Li24 Li 2 j 0.50000 0.44449 0.00000 1.00000 0,Dy,0 Li25 Li 2 | 0.50000 0.44449 0.50000 1.00000 0,Dy,0 Li26 Li 2 k 0.00000 0.44449 0.50000 1.00000 0,Dy,0 Li27 Li 4 o 0.25000 0.47224 0.75000 1.00000 Dx,Dy,Dz Li28 Li 4 o 0.25000 0.47224 0.25000 1.00000 Dx,Dy,Dz Li29 Li 1 b 0.00000 0.50000 0.00000 1.00000 0,0,0 Li30 Li 1 e 0.50000 0.50000 0.00000 1.00000 0.0.0 Li31 Li 1 h 0.50000 0.50000 0.50000 1.00000 0,0,0 Li32 Li 1 f 0.00000 0.50000 0.50000 1.00000 0,0,0 F1 F 4 o 0.75000 0.27831 0.25000 1.00000 Dx,Dy,Dz F2 F 4 o 0.75000 0.27661 0.75000 1.00000 Dx,Dy,Dz F3 F 2 k 0.00000 0.30563 0.50000 1.00000 0,Dy,0 F4 F 2 i 0.00000 0.30570 0.00000 1.00000 0,Dy,0 F5 F 2 j 0.50000 0.30551 0.00000 1.00000 0,Dy,0 F6 F 2 | 0.50000 0.30559 0.50000 1.00000 0,Dy,0 F7 F 4 o 0.25000 0.33331 0.75000 1.00000 Dx,Dy,Dz F8 F 4 o 0.25000 0.33332 0.25000 1.00000 Dx,Dy,Dz F9 F 2 | 0.50000 0.36097 0.50000 1.00000 0,Dy,0 F10 F 2 j 0.50000 0.36104 0.00000 1.00000 0,Dy,0 F11 F 2 i 0.00000 0.36097 0.00000 1.00000 0,Dy,0 F12 F 2 k 0.00000 0.36105 0.50000 1.00000 0,Dy,0 F13 F 4 o 0.25000 0.38881 0.25000 1.00000 Dx,Dy,Dz F14 F 4 o 0.75000 0.38880 0.25000 1.00000 Dx,Dy,Dz F15 F 2 | 0.50000 0.41673 0.50000 1.00000 0,Dy,0 F16 F 2 k 0.00000 0.41673 0.50000 1.00000 0,Dy,0 F17 F 2 j 0.50000 0.41673 0.00000 1.00000 0,Dy,0 F18 F 2 i 0.00000 0.41673 0.00000 1.00000 0,Dy,0 F19 F 4 o 0.75000 0.44449 0.75000 1.00000 Dx,Dy,Dz F20 F 4 o 0.75000 0.44449 0.25000 1.00000 Dx,Dy,Dz F21 F 2 j 0.50000 0.47224 0.00000 1.00000 0,Dy,0 F22 F 2 k 0.00000 0.47224 0.50000 1.00000 0,Dy,0 F23 F 2 | 0.50000 0.47224 0.50000 1.00000 0,Dy,0 F24 F 2 i 0.00000 0.47224 0.00000 1.00000 0,Dy,0 F25 F 2 n 0.75000 0.50000 0.25000 1.00000 Dx,0,Dz

F26F2 n 0.25000 0.50000 0.25000 1.00000 Dx,0,DzF27F4 o 0.73475 0.20839 0.74501 1.00000 Dx,Dy,DzF28F4 o 0.74444 0.20328 0.25411 1.00000 Dx,Dy,DzF29F2 i 0.00000 0.82060 0.00000 1.00000 0,Dy,OF30F2 i 0.00000 0.23564 0.00000 1.00000 0,Dy,OF31F2 k 0.00000 0.23544 0.50000 1.00000 0,Dy,OF32F2 I 0.50000 0.24813 0.50000 1.00000 0,Dy,OF33F2 j 0.50000 0.24809 0.00000 1.00000 0,Dy,OF34Ag4 o 0.25000 0.75855 0.25000 1.00000 Dx,Dy,Dz

end of cif

LiF-AgF₂-Li₂F₃ (full fluorination)

CIF file created by FINDSYM, version 7.1.3

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 5.6492200000 _cell_length_b 71.9581220000 _cell_length_c 5.6492200000 _cell_angle_alpha 90.0000000000 _cell_angle_beta 90.0000000000 _cell_angle_gamma 90.0000000000 _cell_volume 2296.4489544370

_symmetry_space_group_name_H-M "P 1 2/m 1" _symmetry_Int_Tables_number 10 _space_group.reference_setting '010:-P 2y' _space_group.transform_Pp_abc a,b,c;0,0,0

loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 -x,y,-z 3 -x,-y,-z 4 x,-y,z

loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_fract_symmform Li1 Li 2 k 0.00000 0.20634 0.50000 1.00000 0,Dy,0 Li2 Li 2 j 0.50000 0.20328 0.00000 1.00000 0,Dy,0 Li3 Li 2 i 0.00000 0.20511 0.00000 1.00000 0,Dy,0 Li4 Li 2 | 0.50000 0.20023 0.50000 1.00000 0,Dy,0 Li5 Li 2 k 0.00000 0.27874 0.50000 1.00000 0,Dy,0 Li6 Li 2 j 0.50000 0.27648 0.00000 1.00000 0,Dy,0 Li7 Li 2 i 0.00000 0.27854 0.00000 1.00000 0,Dy,0 Li8 Li 2 | 0.50000 0.27642 0.50000 1.00000 0,Dy,0 Li9 Li 4 o 0.25000 0.30575 0.75000 1.00000 Dx,Dy,Dz Li10 Li 4 o 0.75000 0.30522 0.75000 1.00000 Dx,Dy,Dz Li11 Li 2 j 0.50000 0.33323 0.00000 1.00000 0,Dy,0 Li12 Li 2 k 0.00000 0.33339 0.50000 1.00000 0,Dy,0 Li13 Li 2 i 0.00000 0.33333 0.00000 1.00000 0,Dy,0 Li14 Li 2 | 0.50000 0.33328 0.50000 1.00000 0,Dy,0 Li15 Li 4 o 0.75000 0.36099 0.25000 1.00000 Dx,Dy,Dz Li16 Li 4 o 0.25000 0.36095 0.25000 1.00000 Dx,Dy,Dz Li17 Li 2 k 0.00000 0.38881 0.50000 1.00000 0,Dy,0 Li18 Li 2 j 0.50000 0.38880 0.00000 1.00000 0,Dy,0 Li19 Li 2 i 0.00000 0.38886 0.00000 1.00000 0,Dy,0 Li20 Li 2 | 0.50000 0.38863 0.50000 1.00000 0,Dy,0 Li21 Li 4 o 0.25000 0.41673 0.25000 1.00000 Dx,Dy,Dz Li22 Li 4 o 0.25000 0.41673 0.75000 1.00000 Dx,Dy,Dz Li23 Li 2 k 0.00000 0.44449 0.50000 1.00000 0,Dy,0 Li24 Li 2 | 0.50000 0.44449 0.50000 1.00000 0,Dy,0 Li25 Li 2 j 0.50000 0.44449 0.00000 1.00000 0,Dy,0 Li26 Li 2 i 0.00000 0.44449 0.00000 1.00000 0,Dy,0 Li27 Li 4 o 0.25000 0.47224 0.25000 1.00000 Dx,Dy,Dz Li28 Li 4 o 0.25000 0.47224 0.75000 1.00000 Dx,Dy,Dz Li29 Li 1 f 0.00000 0.50000 0.50000 1.00000 0,0,0 Li30 Li 1 h 0.50000 0.50000 0.50000 1.00000 0,0,0 Li31 Li 1 e 0.50000 0.50000 0.00000 1.00000 0,0,0 Li32 Li 1 b 0.00000 0.50000 0.00000 1.00000 0,0,0 F1 F 4 o 0.75000 0.27828 0.75000 1.00000 Dx,Dy,Dz F2 F 4 o 0.75000 0.27630 0.25000 1.00000 Dx,Dy,Dz F3 F 2 i 0.00000 0.30551 0.00000 1.00000 0,Dy,0 F4 F 2 k 0.00000 0.30562 0.50000 1.00000 0,Dy,0 F5 F 2 | 0.50000 0.30529 0.50000 1.00000 0,Dy,0 F6 F 2 j 0.50000 0.30553 0.00000 1.00000 0,Dy,0 F7 F 4 o 0.25000 0.33330 0.25000 1.00000 Dx,Dy,Dz F8 F 4 o 0.25000 0.33328 0.75000 1.00000 Dx,Dy,Dz F9 F 2 j 0.50000 0.36094 0.00000 1.00000 0,Dy,0 F10 F 2 | 0.50000 0.36103 0.50000 1.00000 0,Dy,0 F11 F 2 k 0.00000 0.36095 0.50000 1.00000 0,Dy,0 F12 F 2 i 0.00000 0.36104 0.00000 1.00000 0,Dy,0 F13 F 4 o 0.25000 0.38880 0.75000 1.00000 Dx,Dy,Dz F14 F 4 o 0.75000 0.38880 0.75000 1.00000 Dx,Dy,Dz

F15 F 2 j 0.50000 0.41673 0.00000 1.00000 0,Dy,0 F16 F 2 i 0.00000 0.41673 0.00000 1.00000 0,Dy,0 F17 F 2 | 0.50000 0.41673 0.50000 1.00000 0,Dy,0 F18 F 2 k 0.00000 0.41673 0.50000 1.00000 0,Dy,0 F19 F 4 o 0.75000 0.44449 0.25000 1.00000 Dx,Dy,Dz F20 F 4 o 0.75000 0.44449 0.75000 1.00000 Dx,Dy,Dz F21 F 2 | 0.50000 0.47224 0.50000 1.00000 0,Dy,0 F22 F 2 i 0.00000 0.47224 0.00000 1.00000 0,Dy,0 F23 F 2 j 0.50000 0.47224 0.00000 1.00000 0,Dy,0 F24 F 2 k 0.00000 0.47224 0.50000 1.00000 0,Dy,0 F25 F 2 n 0.75000 0.50000 0.75000 1.00000 Dx,0,Dz F26 F 2 n 0.25000 0.50000 0.75000 1.00000 Dx,0,Dz F27 F 4 o 0.73549 0.20975 0.24959 1.00000 Dx,Dy,Dz F28 F 4 o 0.75166 0.20534 0.74964 1.00000 Dx,Dy,Dz F29 F 2 k 0.00000 0.81897 0.50000 1.00000 0,Dy,0 F30 F 2 j 0.50000 0.82161 0.00000 1.00000 0,Dy,0 F31 F 2 k 0.00000 0.23715 0.50000 1.00000 0,Dy,0 F32 F 2 i 0.00000 0.23687 0.00000 1.00000 0,Dy,0 F33 F 2 j 0.50000 0.24806 0.00000 1.00000 0,Dy,0 F34 F 2 | 0.50000 0.24828 0.50000 1.00000 0,Dy,0 Ag1 Ag 4 o 0.25000 0.75830 0.75000 1.00000 Dx,Dy,Dz

end of cif

References:

1 M. W. Chase, *NIST-JANAF Thermochemical Tables, Fourth Edition*, National Institute of Standards and Technology, Gaithersburg, MD, U.S.A, 1998.