**Supporting Information for Publication:** 

### **Orbital-Dependent Photodynamics of Strongly Correlated Nickel Oxide**

# Clusters

Jacob M. Garcia and Scott G. Sayres\*

School of Molecular Sciences, Arizona State University, Tempe, AZ 85287

Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287

Neutral nickel oxide clusters are produced using a laser vaporization source and their excited states are subsequently measured through the pump-probe technique, where ionization enables detection using a home-built Wiley-McLaren<sup>19</sup> type time-of-flight mass spectrometer (TOFMS) discussed the main text (Fig S1). The instrument consists of a laser vaporization source for cluster production and a mass spectrometer that is maintained at high vacuum conditions (~7.5 x 10<sup>-8</sup> Torr). Neutral clusters were ionized by a sequence of sub-35 fs laser pulses from a Ti:Sapphire laser.





Figures S2-S4 show the overall change in electron density over the summation of the various atomic orbitals. It should be noted that the maximum total electron density transferred from a photoexcitation is 1, but the linear combination of several occupied-virtual pairs that contribute to the photoexcitation can reduce this value. Thus, values less than 1 indicate conflict between orbital pairs (the individual excitations cancel one another for no net change between atomic orbitals), or excitation within the d-d orbitals occurs. The Ni-f, O-s, and O-d orbitals are

involved in the calculation but do not compose a significant percentage of the charge transfer and so are not shown.  $Ni_6O_4$  is unique in that it contains a significant population of O-s orbitals.



**Fig. S2.** C-squared population analysis of the TD-DFT excited states showing the density of states and change in electron density for the Ni-s, Ni-p, Ni-d, and Ni-p orbitals for each of the  $Ni_3O_x$  (x < 4) clusters.



**Fig. S3.** C-squared population analysis of the TD-DFT excited states showing the density of states and change in electron density for the Ni-s, Ni-p, Ni-d, and Ni-p orbitals for each of the Ni<sub>4</sub>O<sub>x</sub> (x=2,3,4) and Ni<sub>5</sub>O<sub>x</sub> (x 3,4,5) clusters.



**Fig. S4.** C-squared population analysis of the TD-DFT excited states showing the density of states and change in electron density for the Ni-s, Ni-p, Ni-d, and Ni-p orbitals for each of the  $Ni_6O_x$  (x=4,5) and  $Ni_7O_x$  (x=5,6) clusters.

The excited state transients for larger clusters are shown in Fig. S5. Optimized structures lowest energy spin configurations for all clusters are shown in Fig. S6.



**Fig. S5.** The transients of the  $Ni_5O_{x_2}$   $Ni_6O_x$  and  $Ni_7O_x$  series showing the change in excitation lifetime as a result of oxidation. Total fit as a solid black line and lifetime ( $\tau$ ) above each transient.

TD-DFT BPW91 transition densities are presented at an isodensity of 0.005/Å<sup>3</sup>. Electron densities are yellow, holes are blue, Ni atoms are green, and oxygen atoms are red.

#### **Cluster Structures and Spin Configuration**



Fig. S6 TD-DFT BPW91 ground state structures and transition densities are presented at an isodensity of  $0.005/\text{Å}^3$ . Electron densities are yellow, holes are blue, Ni atoms are green, and oxygen atoms are red. Note: Ni<sub>2</sub> is shown at an isodensity of  $0.002/\text{Å}^3$  to show the diffuse electron

#### **XYZ** Coordinates

Optimized xyz coordinates (and spin configurations) of nickel oxide clusters obtained at the ground state geometries using BPW91 and standard 6-311G+(d) basis set.

#### NiO (2S+1 = 3)

| Ni                    | 0.000000  | 0.000000  | 0.364260  |
|-----------------------|-----------|-----------|-----------|
| 0                     | 0.000000  | 0.000000  | -1.274911 |
|                       |           |           |           |
| (NiO) <sub>2</sub> (2 | 2S+1 = 3) |           |           |
| Ni                    | 0.000000  | 1.085678  | -0.000030 |
| Ni                    | -0.000000 | -1.085678 | -0.000030 |
| 0                     | -1.404125 | 0.000000  | 0.000105  |
| 0                     | 1.404125  | -0.000000 | 0.000105  |

#### $(NiO)_3 (2S+1 = 3)$

| Ni | 1.328043  | -0.315392 | 0.007794  |
|----|-----------|-----------|-----------|
| Ni | -0.939246 | -0.991770 | 0.000321  |
| Ni | -0.391373 | 1.309927  | -0.000470 |
| 0  | -1.916220 | 0.456836  | -0.004997 |
| 0  | 1.351628  | 1.431724  | 0.005717  |
| 0  | 0.561963  | -1.885771 | 0.006944  |

#### (NiO)<sub>4</sub> (2S+1 = 9)

| Ni | 0.070829  | 1.828745  | 0.000000 |
|----|-----------|-----------|----------|
| Ni | 1.828745  | -0.070829 | 0.000000 |
| Ni | -0.070829 | -1.828745 | 0.000000 |
| Ni | -1.828745 | 0.070829  | 0.000000 |
| 0  | -1.692371 | 1.828745  | 0.000000 |
| 0  | 1.828745  | 1.692371  | 0.000000 |
| 0  | 1.692371  | -1.828745 | 0.000000 |
| 0  | -1.828745 | -1.692371 | 0.000000 |

# (NiO)<sub>5</sub> (2S+1 = 1)

| Ni | -1.689008 | -1.316697 | 0.000000 |
|----|-----------|-----------|----------|
| Ni | 0.000000  | 2.141276  | 0.000000 |
| 0  | -0.226516 | -2.169247 | 0.000000 |
| 0  | 3.100084  | -1.513929 | 0.000000 |
| 0  | -3.117102 | -0.380766 | 0.000000 |
| 0  | -1.616188 | 2.691967  | 0.000000 |
| 0  | 1.571773  | 1.512588  | 0.000000 |
| Ni | 2.509022  | 0.103910  | 0.000000 |
| Ni | 1.460650  | -2.042097 | 0.000000 |

#### (Ni)<sub>2</sub> (2S+1 = 3)

| Ni | 0.000000 | 0.000000 | 1.069862  |
|----|----------|----------|-----------|
| Ni | 0.000000 | 0.000000 | -1.069862 |

# (Ni<sub>2</sub>O) (2S+1 = 3)

| Ni | 0.000000  | 1.163547  | -0.159996 |
|----|-----------|-----------|-----------|
| Ni | -0.000000 | -1.163547 | -0.159996 |
| 0  | 0.000000  | -0.000000 | 1.119974  |

# $(Ni)_3 (2S+1 = 3)$

| Ni | 0.000000  | 1.286404  | 0.000000 |
|----|-----------|-----------|----------|
| Ni | 1.119340  | -0.633987 | 0.000000 |
| Ni | -1.119340 | -0.652416 | 0.000000 |

#### (Ni<sub>3</sub>O) (2S+1 = 5)

| Ni | 0.494537  | -1.142170 | -0.093452 |
|----|-----------|-----------|-----------|
| Ni | 0.494392  | 1.142205  | -0.093455 |
| Ni | -1.495323 | -0.000064 | 0.073094  |
| 0  | 1.772377  | 0.000103  | 0.398343  |

# (Ni<sub>3</sub>O<sub>2</sub>) (2S+1 = 3)

| Ni | 1.216779  | -0.854176 | 0.000000  |
|----|-----------|-----------|-----------|
| Ni | -1.216805 | -0.854714 | -0.000000 |
| 0  | 1.679226  | 0.797553  | 0.000000  |
| 0  | -1.679134 | 0.797039  | -0.000000 |
| Ni | 0.000000  | 1.253291  | 0.000000  |
|    |           |           |           |

# (Ni<sub>4</sub>O<sub>2</sub>) (2S+1 = 3)

| Ni | -0.827327 | -0.748011 | -1.068498 |
|----|-----------|-----------|-----------|
| Ni | -0.915978 | 0.075278  | 1.243093  |
| Ni | 1.112711  | -0.945770 | 0.346563  |
| Ni | 0.450366  | 1.256149  | -0.362709 |
| 0  | -1.374122 | 0.818017  | -0.362586 |
| 0  | 2.004921  | 0.450223  | -0.191987 |
|    |           |           |           |

# (Ni<sub>4</sub>O<sub>3</sub>) (2S+1 = 3)

| Ni | -0.999957 | 0.249472  | 1.158076  |
|----|-----------|-----------|-----------|
| Ni | -0.985685 | -0.444071 | -1.112557 |
| Ni | 0.750493  | 1.218705  | -0.222483 |
| Ni | 1.099198  | -1.058078 | 0.163461  |
| 0  | -0.670724 | -1.462590 | 0.448069  |
| 0  | 2.231266  | 0.284988  | 0.010914  |

# (Ni<sub>5</sub>O<sub>3</sub>) (2S+1 = 5)

| Ni | -0.305533 | 1.168431  | -0.665141 |
|----|-----------|-----------|-----------|
| Ni | -0.307554 | -1.184050 | -0.635149 |
| Ni | 0.428512  | 0.017715  | 1.400640  |
| Ni | -2.038145 | 0.007998  | 0.473687  |
| 0  | -1.609560 | -0.015224 | -1.320454 |
| Ni | 2.014405  | -0.006530 | -0.398175 |
| 0  | 1.187284  | 1.459059  | 0.375388  |
| 0  | 1.184819  | -1.450562 | 0.412472  |
|    |           |           |           |

# (Ni<sub>5</sub>O<sub>4</sub>) (2S+1 = 5)

| Ni | 0.006762  | 0.017516  | -1.339334 |  |
|----|-----------|-----------|-----------|--|
| Ni | -1.373192 | 1.261698  | 0.215626  |  |
| Ni | 1.417188  | 1.206952  | 0.230885  |  |
| Ni | 1.211528  | -1.257850 | 0.325735  |  |
| Ni | -1.266030 | -1.209339 | 0.311517  |  |
| 0  | 0.039204  | 1.816149  | -0.833176 |  |
| 0  | 2.207819  | -0.065789 | 1.120634  |  |
| 0  | -2.223210 | 0.021086  | 1.095954  |  |
| 0  | -0.031058 | -1.791036 | -0.909245 |  |

# (Ni<sub>6</sub>O<sub>4</sub>) (2S+1 = 3)

| Ni | -0.005864 | 1.268372  | -1.201304 |
|----|-----------|-----------|-----------|
| Ni | -0.003204 | 1.217069  | 1.251257  |
| Ni | 0.012111  | -1.267296 | 1.202325  |
| Ni | 0.009301  | -1.216475 | -1.252241 |
| Ni | -1.815499 | -0.011485 | 0.001597  |
| Ni | 1.782067  | 0.009701  | -0.001641 |
| 0  | -1.236479 | -0.042329 | 1.733593  |
| 0  | -1.239924 | 0.029036  | -1.731309 |
| 0  | 1.284766  | -1.767349 | -0.037217 |
| 0  | 1.265443  | 1.781041  | 0.034956  |

# (Ni<sub>6</sub>O<sub>5</sub>) (2S+1 = 5)

| Ni | 1.75401900  | 0.61705900  | -0.81145800 |
|----|-------------|-------------|-------------|
| Ni | -0.55793700 | 0.41788500  | -1.52753800 |
| 0  | 0.91721500  | 0.96393500  | -2.29230300 |
| Ni | -1.76618600 | 0.80089400  | 0.57056800  |
| Ni | 0.51343300  | 0.96477700  | 1.30351600  |
| Ni | 1.17083400  | -1.32890700 | 0.59707400  |
| 0  | 2.14221800  | 0.19121000  | 0.94212200  |
| 0  | 0.06514300  | -2.67278900 | 0.45206600  |

| 0  | -0.94476600 | 1.80317600  | 1.76500800  |
|----|-------------|-------------|-------------|
| Ni | -1.11196900 | -1.49233200 | -0.11936000 |
| 0  | -2.18748900 | -0.21334800 | -0.91170300 |

# (Ni<sub>7</sub>O<sub>5</sub>) (2S+1 = 11)

| Ni | 2.18367800  | -0.05438700 | -0.00117000 |
|----|-------------|-------------|-------------|
| Ni | 0.43376100  | 1.23390900  | 1.18050400  |
| Ni | -1.75498000 | 1.23160800  | 0.00045900  |
| Ni | 0.36380700  | -1.24032500 | -1.17963200 |
| Ni | 0.42552800  | 1.21082600  | -1.19704200 |
| Ni | 0.35790400  | -1.21789700 | 1.19642800  |
| Ni | -1.83170400 | -1.16950200 | 0.00351500  |
| 0  | -0.48413200 | -2.41086200 | 0.01690000  |
| 0  | -3.08002100 | 0.07363700  | -0.00994800 |
| 0  | 1.65609500  | -0.02571100 | 1.81512100  |
| 0  | 1.65505600  | -0.05168200 | -1.81642600 |
| 0  | -0.36997600 | 2.43480500  | -0.01636100 |

# (Ni<sub>7</sub>O<sub>6</sub>) (2S+1 = 9)

| Ni | 1.53661500  | -1.44236500 | -0.06564000 |
|----|-------------|-------------|-------------|
| Ni | 1.53483400  | 0.66487600  | 1.28303400  |
| Ni | -0.45699400 | 1.54340600  | 0.06995100  |
| Ni | -0.45654200 | -0.71176700 | -1.37066500 |
| Ni | 1.53736100  | 0.77856800  | -1.21662300 |
| Ni | -0.45677600 | -0.83311900 | 1.30126200  |
| Ni | -2.50261500 | 0.00026900  | -0.00089500 |
| 0  | -2.18716200 | -0.80174900 | -1.54739200 |
| 0  | -2.18740100 | 1.74065100  | 0.07912100  |
| 0  | 1.32882500  | -1.11635800 | 1.74456000  |
| 0  | 1.32896800  | -0.95244800 | -1.83895400 |
| 0  | 1.32864800  | 2.06872100  | 0.09403900  |
| 0  | -2.18746700 | -0.93835800 | 1.46714400  |